Dynamic multiple nanoparticle trapping using metamaterial plasmonic tweezers

arXiv: Optics Pub Date : 2020-10-12 DOI:10.1063/5.0032846
D. Kotsifaki, V. G. Truong, S. Nic Chormaic
{"title":"Dynamic multiple nanoparticle trapping using metamaterial plasmonic tweezers","authors":"D. Kotsifaki, V. G. Truong, S. Nic Chormaic","doi":"10.1063/5.0032846","DOIUrl":null,"url":null,"abstract":"Optical manipulation has attracted remarkable interest owing to its versatile and non-invasive nature. However, conventional optical trapping remains inefficient for the nanoscopic world. The emergence of plasmonics in recent years has brought a revolutionary change in overcoming limitations due to diffraction and the requirements for high trapping laser powers. Among the near-field optical trapping cavity-based systems, Fano resonant optical tweezers have a robust trapping capability. In this work, we experimentally demonstrate sequential trapping of 20 nm particles through the use of metamaterial plasmonic optical tweezers. We investigate the multiple trapping via trap stiffness measurements for various trapping positions at low and high incident laser intensities. Our configuration could be used as a light-driven nanoscale sorting device under low laser excitation. Our results provide an alternative approach to trap multiple nanoparticles at distinct hotspots, enabling new ways to control mass transport on the nanoscale.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"01 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0032846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Optical manipulation has attracted remarkable interest owing to its versatile and non-invasive nature. However, conventional optical trapping remains inefficient for the nanoscopic world. The emergence of plasmonics in recent years has brought a revolutionary change in overcoming limitations due to diffraction and the requirements for high trapping laser powers. Among the near-field optical trapping cavity-based systems, Fano resonant optical tweezers have a robust trapping capability. In this work, we experimentally demonstrate sequential trapping of 20 nm particles through the use of metamaterial plasmonic optical tweezers. We investigate the multiple trapping via trap stiffness measurements for various trapping positions at low and high incident laser intensities. Our configuration could be used as a light-driven nanoscale sorting device under low laser excitation. Our results provide an alternative approach to trap multiple nanoparticles at distinct hotspots, enabling new ways to control mass transport on the nanoscale.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用超材料等离子体镊子动态捕获多纳米粒子
光学操作由于其通用性和非侵入性而引起了人们极大的兴趣。然而,传统的光学捕获在纳米领域仍然效率低下。等离子体的出现,近年来带来了革命性的变化,克服了限制,由于衍射和高捕获激光功率的要求。在基于空腔的近场光捕获系统中,范诺谐振光镊具有较强的捕获能力。在这项工作中,我们通过使用超材料等离子体光镊实验证明了20纳米粒子的顺序捕获。我们通过测量不同捕获位置在低和高入射激光强度下的捕获刚度来研究多重捕获。我们的结构可以用作低激光激励下的光驱动纳米级分选装置。我们的研究结果提供了一种在不同热点处捕获多个纳米颗粒的替代方法,从而实现了在纳米尺度上控制质量传递的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reconstruction of attosecond beating by interference of two-photon transitions in the bulk of solids All-Fibre Label-Free Nano-Sensor for Real-Time in situ Early Monitoring of Cellular Apoptosis Temporal interfaces and metamaterial response enabled by boundaries Photon Conversion and Interaction on Chip Hybrid integrated low noise linearly chirped Frequency Modulated Continuous Wave laser source based on self-injection to external cavity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1