A Fuzzy Wavelet Neural Network Model for System Identification

Sevcan Yilmaz, Y. Oysal
{"title":"A Fuzzy Wavelet Neural Network Model for System Identification","authors":"Sevcan Yilmaz, Y. Oysal","doi":"10.1109/ISDA.2009.96","DOIUrl":null,"url":null,"abstract":"In this paper, a fuzzy wavelet neural network model is proposed for system identification problems. The proposed model is obtained from the traditional Takagi-Sugeno-Kang (TSK) fuzzy system by replacing the consequent part of fuzzy rules with wavelet basis functions that have time-frequency localization properties. We use a radial function of Mexican Hat wavelet in the consequent part of each rule. A fast gradient algorithm based on quasi-Newton methods is used to obtain the optimal values for unknown parameters of the model. Simulation results of some benchmark problems in the literature are also given to illustrate the effectiveness of the model.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, a fuzzy wavelet neural network model is proposed for system identification problems. The proposed model is obtained from the traditional Takagi-Sugeno-Kang (TSK) fuzzy system by replacing the consequent part of fuzzy rules with wavelet basis functions that have time-frequency localization properties. We use a radial function of Mexican Hat wavelet in the consequent part of each rule. A fast gradient algorithm based on quasi-Newton methods is used to obtain the optimal values for unknown parameters of the model. Simulation results of some benchmark problems in the literature are also given to illustrate the effectiveness of the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于系统辨识的模糊小波神经网络模型
针对系统辨识问题,提出了一种模糊小波神经网络模型。该模型是在传统的Takagi-Sugeno-Kang (TSK)模糊系统的基础上,用具有时频局部化特性的小波基函数代替模糊规则的结果部分得到的。我们在每条规则的后续部分使用了墨西哥帽小波的径向函数。采用基于准牛顿方法的快速梯度算法求解模型中未知参数的最优值。最后给出了文献中一些基准问题的仿真结果,说明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EACImpute: An Evolutionary Algorithm for Clustering-Based Imputation An FPGA Based Arrhythmia Recognition System for Wearable Applications Knowledge Discovery Approaches for Early Detection of Decompensation Conditions in Heart Failure Patients Evaluating an Intelligent Business System with a Fuzzy Multi-criteria Approach Time Analysis of Forum Evolution as Support Tool for E-Moderating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1