Predetermined time constant approximation method for optimising search space boundary by standard genetic algorithm

Kumaran Rajarathianm, J. Gomm, K. Jones, Dingli Yu
{"title":"Predetermined time constant approximation method for optimising search space boundary by standard genetic algorithm","authors":"Kumaran Rajarathianm, J. Gomm, K. Jones, Dingli Yu","doi":"10.1145/2812428.2812466","DOIUrl":null,"url":null,"abstract":"In this paper, a new predetermined time constant approximation (Tsp) method for optimising the search space boundaries to improve SGAs convergence is proposed. This method is demonstrated on parameter identification of higher order models. Using the dynamic response period and desired settling time of the transfer function coefficients offered a better suggestion for initial Tsp values. Furthermore, an extension on boundaries derived from the initial Tsp values and the consecutive execution, brought the elite groups within feasible boundary regions for better exploration. This enhanced the process of locating of the optimal values of coefficients for the transfer function. The Tsp method is investigated on two processes; excess oxygen and a third order continuous model with and without random disturbance. The simulation results assured the Tsp method's effectiveness and flexibility in assisting SGAs to locate optimal transfer function coefficients.","PeriodicalId":316788,"journal":{"name":"International Conference on Computer Systems and Technologies","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Systems and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2812428.2812466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a new predetermined time constant approximation (Tsp) method for optimising the search space boundaries to improve SGAs convergence is proposed. This method is demonstrated on parameter identification of higher order models. Using the dynamic response period and desired settling time of the transfer function coefficients offered a better suggestion for initial Tsp values. Furthermore, an extension on boundaries derived from the initial Tsp values and the consecutive execution, brought the elite groups within feasible boundary regions for better exploration. This enhanced the process of locating of the optimal values of coefficients for the transfer function. The Tsp method is investigated on two processes; excess oxygen and a third order continuous model with and without random disturbance. The simulation results assured the Tsp method's effectiveness and flexibility in assisting SGAs to locate optimal transfer function coefficients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用标准遗传算法优化搜索空间边界的预定时间常数逼近方法
本文提出了一种新的预定时间常数近似(Tsp)方法来优化搜索空间边界,以提高SGAs的收敛性。该方法在高阶模型的参数辨识中得到了验证。利用传递函数系数的动态响应周期和期望沉降时间对初始Tsp值提出了较好的建议。此外,在初始Tsp值的基础上对边界进行扩展并连续执行,使精英群体处于可行的边界区域内,以便更好地进行勘探。这提高了寻找传递函数最优系数值的过程。Tsp方法在两个过程中进行了研究;过量氧和有和无随机干扰的三阶连续模型。仿真结果证明了Tsp方法在帮助SGAs定位最优传递函数系数方面的有效性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
21st Century Skills of ICT Professionals: the Requirements of Business and Readiness of Higher Education in Bulgaria Portable knitting format - XML-based language for knitting symbols description Automated social network analysis of online student collaboration activity Navigation support for old and handicapped persons in urban regions Multi-touch interaction techniques to control 3D objects on a smartphone screen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1