Prediction models for estimation of survival rate and relapse for breast cancer patients

B. Cirkovic, A. Cvetkovic, S. Ninkovic, N. Filipovic
{"title":"Prediction models for estimation of survival rate and relapse for breast cancer patients","authors":"B. Cirkovic, A. Cvetkovic, S. Ninkovic, N. Filipovic","doi":"10.1109/BIBE.2015.7367658","DOIUrl":null,"url":null,"abstract":"In this paper, we described the practical application of data mining methods for estimation of survival rate and disease relapse for breast cancer patients. A comparative study of prominent machine learning models was carried out and according to the achieved results we concluded that the classifiers obviously learn some of the concepts of breast cancer survivability and recurrence. These algorithms were successfully applied to a novel breast cancer data set of the Clinical Center of Kragujevac. The Naive Bayes classifier is selected as a model for prognosis of cancer survivability on the basis of the 5 years survival rate, while the Artificial Neural Network has achieved the best performance in prognosis of cancer recurrence. Selection of twenty attributes that are the most related to success of prognosis on survivability can give new insights into the set of prognostic factors which need to be observed by medical experts.","PeriodicalId":422807,"journal":{"name":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2015.7367658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, we described the practical application of data mining methods for estimation of survival rate and disease relapse for breast cancer patients. A comparative study of prominent machine learning models was carried out and according to the achieved results we concluded that the classifiers obviously learn some of the concepts of breast cancer survivability and recurrence. These algorithms were successfully applied to a novel breast cancer data set of the Clinical Center of Kragujevac. The Naive Bayes classifier is selected as a model for prognosis of cancer survivability on the basis of the 5 years survival rate, while the Artificial Neural Network has achieved the best performance in prognosis of cancer recurrence. Selection of twenty attributes that are the most related to success of prognosis on survivability can give new insights into the set of prognostic factors which need to be observed by medical experts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估计乳腺癌患者生存率和复发率的预测模型
在本文中,我们描述了数据挖掘方法在估计乳腺癌患者生存率和疾病复发率方面的实际应用。我们对著名的机器学习模型进行了比较研究,根据取得的结果,我们得出结论,分类器显然学习了乳腺癌存活率和复发率的一些概念。这些算法成功地应用于Kragujevac临床中心的一个新的乳腺癌数据集。在5年生存率的基础上,选择朴素贝叶斯分类器作为癌症生存能力的预后模型,而人工神经网络在癌症复发预后方面取得了最好的效果。选择20个与生存能力预后最相关的属性,可以为医学专家需要观察的预后因素集提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated SOSORT-recommended angles measurement in patients with adolescent idiopathic scoliosis Estimating changes in a cognitive performance using heart rate variability Some examples on the performance of density functional theory in the description of bioinorganic systems and processes Modeling the metabolism of escherichia coli under oxygen gradients with dynamically changing flux bounds An automated approach to conduct effective on-site presumptive drug tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1