Designing experiments for optimal reduction of uncertainty in gene regulatory networks

Roozbeh Dehghannasiri, Byung-Jun Yoon, E. Dougherty
{"title":"Designing experiments for optimal reduction of uncertainty in gene regulatory networks","authors":"Roozbeh Dehghannasiri, Byung-Jun Yoon, E. Dougherty","doi":"10.1109/GENSIPS.2013.6735942","DOIUrl":null,"url":null,"abstract":"One of the main issues in systems biology is limited resources for conducting biological experiments. Therefore, a strategy for prioritizing the experiments seems to be inevitable. Experimental design is the process of planning experiments in such a way to make experiments as informative as possible. In this work, we propose a novel strategy for designing effective experiments that can optimally reduce the uncertainty in gene regulatory networks, based on the concept of mean objective cost of uncertainty (MOCU).","PeriodicalId":336511,"journal":{"name":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2013.6735942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the main issues in systems biology is limited resources for conducting biological experiments. Therefore, a strategy for prioritizing the experiments seems to be inevitable. Experimental design is the process of planning experiments in such a way to make experiments as informative as possible. In this work, we propose a novel strategy for designing effective experiments that can optimally reduce the uncertainty in gene regulatory networks, based on the concept of mean objective cost of uncertainty (MOCU).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计实验以优化减少基因调控网络中的不确定性
系统生物学的主要问题之一是进行生物实验的资源有限。因此,确定实验优先级的策略似乎是不可避免的。实验设计是计划实验的过程,以使实验尽可能地提供信息。在这项工作中,我们提出了一种基于平均客观不确定性成本(MOCU)概念的设计有效实验的新策略,可以最优地减少基因调控网络中的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compromised intervention policies for phenotype alteration SeqBBS: A change-point model based algorithm and R package for searching CNV regions via the ratio of sequencing reads Optimal Bayesian MMSE estimation of the coefficient of determination for discrete prediction Boolean model to experimental validation: A preliminary attempt Inference of genetic regulatory networks with unknown covariance structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1