DDoS and Flash Event Detection in Higher Bandwidth SDN-IoT using Multiagent Reinforcement Learning

D. K. Dake, J. Gadze, G. S. Klogo
{"title":"DDoS and Flash Event Detection in Higher Bandwidth SDN-IoT using Multiagent Reinforcement Learning","authors":"D. K. Dake, J. Gadze, G. S. Klogo","doi":"10.1109/ICCMA53594.2021.00011","DOIUrl":null,"url":null,"abstract":"The emergence of 5G, IoT, Big Data, and related technologies have necessitated a shift to SDN architectural design and DRL algorithms for network task automation. Without prompt intelligent detection, the volumetric UDP flooding attack from zombies in an SDN-IoT network tends to consume network resources and mix with flash crowd events from legitimate hosts. This paper proposes a multiagent reinforcement learning framework in SDN-IoT to detect and mitigate DDoS attacks and route flash crowd events in the network effectively without compromising benign traffic. We simulated a 200 nodes topology with higher bandwidth and transmission rate in Mininet and implemented a multiagent deep deterministic policy gradient (MADDPG) algorithm for the framework. From the simulation results, the proposed approach outperforms Deep Deterministic Policy Gradient (DDPG) algorithm for the following network metrics: delay; jitter; packet loss; intrusion detection; and bandwidth utilization of network flows","PeriodicalId":131082,"journal":{"name":"2021 International Conference on Computing, Computational Modelling and Applications (ICCMA)","volume":"125 17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computing, Computational Modelling and Applications (ICCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMA53594.2021.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The emergence of 5G, IoT, Big Data, and related technologies have necessitated a shift to SDN architectural design and DRL algorithms for network task automation. Without prompt intelligent detection, the volumetric UDP flooding attack from zombies in an SDN-IoT network tends to consume network resources and mix with flash crowd events from legitimate hosts. This paper proposes a multiagent reinforcement learning framework in SDN-IoT to detect and mitigate DDoS attacks and route flash crowd events in the network effectively without compromising benign traffic. We simulated a 200 nodes topology with higher bandwidth and transmission rate in Mininet and implemented a multiagent deep deterministic policy gradient (MADDPG) algorithm for the framework. From the simulation results, the proposed approach outperforms Deep Deterministic Policy Gradient (DDPG) algorithm for the following network metrics: delay; jitter; packet loss; intrusion detection; and bandwidth utilization of network flows
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多智能体强化学习的高带宽SDN-IoT DDoS和Flash事件检测
5G、物联网、大数据等相关技术的出现,使得网络任务自动化必须转向SDN架构设计和DRL算法。如果没有及时的智能检测,SDN-IoT网络中僵尸的海量UDP洪水攻击往往会消耗网络资源,并与合法主机的flash人群事件混合在一起。本文提出了一种SDN-IoT中的多智能体强化学习框架,以有效地检测和缓解DDoS攻击,并在不影响良性流量的情况下有效地路由网络中的flash人群事件。我们在Mininet中模拟了具有更高带宽和传输速率的200节点拓扑结构,并为该框架实现了多智能体深度确定性策略梯度(madpg)算法。从仿真结果来看,该方法在以下网络指标上优于深度确定性策略梯度(DDPG)算法:延迟;抖动;包丢失;入侵检测;以及网络流量的带宽利用率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Botnet Attack Detection Using Principal Component Analysis and Ensemble Voting Algorithm Cyber Threat Ontology and Adversarial Machine Learning Attacks: Analysis and Prediction Perturbance Using Machine Learning to Predict Students’ Academic Performance During Covid-19 Jack-knifing in small samples of survival data: when bias meets variance to increase estimate precision Crime Predictive Model in Cybercrime based on Social and Economic Factors Using the Bayesian and Markov Theories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1