Behavior of a Bayesian adaptation method for incremental enrollment in speaker verification

C. Fredouille, J. Mariéthoz, C. Jaboulet, J. Hennebert, C. Mokbel, F. Bimbot
{"title":"Behavior of a Bayesian adaptation method for incremental enrollment in speaker verification","authors":"C. Fredouille, J. Mariéthoz, C. Jaboulet, J. Hennebert, C. Mokbel, F. Bimbot","doi":"10.1109/ICASSP.2000.859180","DOIUrl":null,"url":null,"abstract":"Classical adaptation approaches are generally used for speaker or environment adaptation of speech recognition systems. In this paper, we use such techniques for the incremental training of client models in a speaker verification system. The initial model is trained on a very limited amount of data and then progressively updated with access data, using a segmental-EM procedure. In supervised mode (i.e. when access utterances are certified), the incremental approach yields equivalent performance to the batch one. We also investigate on the impact of various scenarios of impostor attacks during the incremental enrollment phase. All results are obtained with the Picassoft platform-the state-of-the-art speaker verification system developed in the PICASSO project.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.859180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Classical adaptation approaches are generally used for speaker or environment adaptation of speech recognition systems. In this paper, we use such techniques for the incremental training of client models in a speaker verification system. The initial model is trained on a very limited amount of data and then progressively updated with access data, using a segmental-EM procedure. In supervised mode (i.e. when access utterances are certified), the incremental approach yields equivalent performance to the batch one. We also investigate on the impact of various scenarios of impostor attacks during the incremental enrollment phase. All results are obtained with the Picassoft platform-the state-of-the-art speaker verification system developed in the PICASSO project.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
说话人验证中增量登记的贝叶斯自适应方法的行为
语音识别系统一般采用经典的自适应方法对说话人或环境进行自适应。在本文中,我们将这些技术用于说话人验证系统中客户端模型的增量训练。初始模型在非常有限的数据量上进行训练,然后使用分段em过程逐步更新访问数据。在监督模式下(即当访问话语被认证时),增量方法产生与批量方法相同的性能。我们还研究了在增量注册阶段各种冒名顶替攻击场景的影响。所有结果都是通过Picassoft平台获得的,这是毕加索项目中开发的最先进的扬声器验证系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-based multidimensional volume registration Generation of optimum signature base sequences for speech signals Denoising of human speech using combined acoustic and EM sensor signal processing New estimation technique for a class of chaotic signals Inversion of block matrices with block banded inverses: application to Kalman-Bucy filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1