Attack Detection and Countermeasures for Autonomous Navigation

Md Tanvir Arafin, K. Kornegay
{"title":"Attack Detection and Countermeasures for Autonomous Navigation","authors":"Md Tanvir Arafin, K. Kornegay","doi":"10.1109/CISS50987.2021.9400224","DOIUrl":null,"url":null,"abstract":"Advances in artificial intelligence, machine learning, and robotics have profoundly impacted the field of autonomous navigation and driving. However, sensor spoofing attacks can compromise critical components and the control mechanisms of mobile robots. Therefore, understanding vulnerabilities in autonomous driving and developing countermeasures remains imperative for the safety of unmanned vehicles. Hence, we demonstrate cross-validation techniques for detecting spoofing attacks on the sensor data in autonomous driving in this work. First, we discuss how visual and inertial odometry (VIO) algorithms can provide a root-of-trust during navigation. Then, we develop examples for sensor data spoofing attacks using the open-source driving dataset. Next, we design an attack detection technique using VIO algorithms that cross-validates the navigation parameters using the IMU and the visual data. Following, we consider hardware-dependent attack survival mechanisms that support an autonomous system during an attack. Finally, we also provide an example of spoofing survival technique using on-board hardware oscillators. Our work demonstrates the applicability of classical mobile robotics algorithms and hardware security primitives in defending autonomous vehicles from targeted cyber attacks.","PeriodicalId":228112,"journal":{"name":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS50987.2021.9400224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Advances in artificial intelligence, machine learning, and robotics have profoundly impacted the field of autonomous navigation and driving. However, sensor spoofing attacks can compromise critical components and the control mechanisms of mobile robots. Therefore, understanding vulnerabilities in autonomous driving and developing countermeasures remains imperative for the safety of unmanned vehicles. Hence, we demonstrate cross-validation techniques for detecting spoofing attacks on the sensor data in autonomous driving in this work. First, we discuss how visual and inertial odometry (VIO) algorithms can provide a root-of-trust during navigation. Then, we develop examples for sensor data spoofing attacks using the open-source driving dataset. Next, we design an attack detection technique using VIO algorithms that cross-validates the navigation parameters using the IMU and the visual data. Following, we consider hardware-dependent attack survival mechanisms that support an autonomous system during an attack. Finally, we also provide an example of spoofing survival technique using on-board hardware oscillators. Our work demonstrates the applicability of classical mobile robotics algorithms and hardware security primitives in defending autonomous vehicles from targeted cyber attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自主导航攻击检测与对策
人工智能、机器学习和机器人技术的进步深刻影响了自主导航和自动驾驶领域。然而,传感器欺骗攻击会危及移动机器人的关键部件和控制机制。因此,了解自动驾驶的漏洞并制定对策对于无人驾驶车辆的安全至关重要。因此,我们在这项工作中展示了用于检测自动驾驶传感器数据欺骗攻击的交叉验证技术。首先,我们讨论了视觉和惯性里程计(VIO)算法如何在导航过程中提供信任根。然后,我们使用开源驱动数据集开发传感器数据欺骗攻击的示例。接下来,我们使用VIO算法设计了一种攻击检测技术,该技术使用IMU和视觉数据交叉验证导航参数。接下来,我们考虑在攻击期间支持自治系统的依赖于硬件的攻击生存机制。最后,我们还提供了一个使用板载硬件振荡器的欺骗生存技术的示例。我们的工作证明了经典移动机器人算法和硬件安全原语在保护自动驾驶汽车免受针对性网络攻击方面的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative Analysis System for Bacterial Cells in SEM Image using Deep Learning Using Rényi-divergence and Arimoto-Rényi Information to Quantify Membership Information Leakage Distributed Mirror Descent with Integral Feedback: Convergence Analysis from a Dynamical System Perspective Enhanced Determination of Gene Groups Based on Optimal Kernel PCA with Hierarchical Clustering Algorithm AoI-Driven Statistical Delay and Error-Rate Bounded QoS Provisioning for URLLC in the Finite Blocklength Regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1