Komparasi Algoritma Naive Bayes dan K-Nearest Neighbor untuk Membangun Pengetahuan Diagnosa Penyakit Diabetes

Maulidya Dwi Nurmalasari, K. Kusrini, S. Sudarmawan
{"title":"Komparasi Algoritma Naive Bayes dan K-Nearest Neighbor untuk Membangun Pengetahuan Diagnosa Penyakit Diabetes","authors":"Maulidya Dwi Nurmalasari, K. Kusrini, S. Sudarmawan","doi":"10.31603/KOMTIKA.V5I1.5140","DOIUrl":null,"url":null,"abstract":"Diabetes is caused by a deficiency of the hormone insulin, which is secreted by the pancreas to lower blood sugar levels. The factors that trigger the occurrence of diabetes are derived from various factors such as a combination of genetic and environmental factors. The phenomenon of the emergence of various beverage brand outlets can be one of the triggers for blood sugar levels in humans. Normal blood sugar levels in the body range from 70-130 mg/dL before eating, less than 180 mg/dL two hours after eating, less than 100 mg/dL after not eating or surviving for eight hours, and 100-140 mg/dL at bedtime. This research aims to determine which algorithm is suitable for building knowledge about diabetes using the Naïve Bayes and K-Nearest Neighbor (KNN) algorithm. The accuracy results from Naïve Bayes are 85.60% and K- Nearest Neighbor of 91.61%. The results showed that K-Nearest Neighbor proved to have the best accuracy.","PeriodicalId":292404,"journal":{"name":"Jurnal Komtika (Komputasi dan Informatika)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Komtika (Komputasi dan Informatika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31603/KOMTIKA.V5I1.5140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Diabetes is caused by a deficiency of the hormone insulin, which is secreted by the pancreas to lower blood sugar levels. The factors that trigger the occurrence of diabetes are derived from various factors such as a combination of genetic and environmental factors. The phenomenon of the emergence of various beverage brand outlets can be one of the triggers for blood sugar levels in humans. Normal blood sugar levels in the body range from 70-130 mg/dL before eating, less than 180 mg/dL two hours after eating, less than 100 mg/dL after not eating or surviving for eight hours, and 100-140 mg/dL at bedtime. This research aims to determine which algorithm is suitable for building knowledge about diabetes using the Naïve Bayes and K-Nearest Neighbor (KNN) algorithm. The accuracy results from Naïve Bayes are 85.60% and K- Nearest Neighbor of 91.61%. The results showed that K-Nearest Neighbor proved to have the best accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟算法幼稚的Bayes和K-Nearest邻居建立对糖尿病诊断的知识
糖尿病是由胰岛素缺乏引起的,胰岛素是胰腺分泌的,用于降低血糖水平。引发糖尿病发生的因素是遗传和环境等多种因素共同作用的结果。各种饮料品牌网点的出现可能是人类血糖水平的触发因素之一。正常的血糖水平在进食前为70-130毫克/分升,进食后2小时低于180毫克/分升,不进食或存活8小时后低于100毫克/分升,睡前为100-140毫克/分升。本研究旨在确定哪种算法适合使用Naïve贝叶斯和k -最近邻(KNN)算法来建立关于糖尿病的知识。Naïve的准确率为85.60%,K-最近邻的准确率为91.61%。结果表明,k近邻算法具有最佳的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analisa Pengukuran Tingkat Kepuasan Pengguna Aplikasi Daytrans Dengan Kerangka Kerja Pieces Framework Analysis of User Experience on the MyPertamina Application using User Experience Questionnaire Method Monitoring dan Klasifikasi Kualitas Air Kolam Ikan Gurami Berbasis Internet of Things Menggunakan Metode Naive Bayes Evaluation of Maturity Level and Recommendations for Improvement of Software Testing Process Based on Test Maturity Model Integration (TMMi): A Case Study Analisis dan Penanganan Insiden Siber SQL Injection Menggunakan Kerangka NIST SP 800-61R2 dan Algoritma Klusterisasi K-Means
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1