{"title":"Low bit rate image coding in the scale space","authors":"Xin Li","doi":"10.1109/DCC.2002.999941","DOIUrl":null,"url":null,"abstract":"Scale-space representation has been extensively studied in the computer vision community for analyzing image structures at different scales. This paper borrows and develops useful mathematical tools from scale-space theory to facilitate the task of image compression. Instead of compressing the original image directly, we propose to compress its scale-space representation obtained by the forward diffusion with a Gaussian kernel at the chosen scale. The major contribution of this work is a novel solution to the ill-posed inverse diffusion problem. We analytically derive a nonlinear filter to deblur Gaussian blurring for 1D ideal step edges. The generalized 2D edge enhancing filter only requires the knowledge of local minimum/maximum and preserves the geometric constraint of edges. When combined with a standard wavelet-based image coder, the forward and inverse diffusion can be viewed as a pair of pre-processing and post-processing stages used to select and preserve important image features at the given bit rate. Experiment results have shown that the proposed diffusion-based techniques can dramatically improve the visual quality of reconstructed images at low bit rate (below 0.25bpp).","PeriodicalId":420897,"journal":{"name":"Proceedings DCC 2002. Data Compression Conference","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC 2002. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2002.999941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Scale-space representation has been extensively studied in the computer vision community for analyzing image structures at different scales. This paper borrows and develops useful mathematical tools from scale-space theory to facilitate the task of image compression. Instead of compressing the original image directly, we propose to compress its scale-space representation obtained by the forward diffusion with a Gaussian kernel at the chosen scale. The major contribution of this work is a novel solution to the ill-posed inverse diffusion problem. We analytically derive a nonlinear filter to deblur Gaussian blurring for 1D ideal step edges. The generalized 2D edge enhancing filter only requires the knowledge of local minimum/maximum and preserves the geometric constraint of edges. When combined with a standard wavelet-based image coder, the forward and inverse diffusion can be viewed as a pair of pre-processing and post-processing stages used to select and preserve important image features at the given bit rate. Experiment results have shown that the proposed diffusion-based techniques can dramatically improve the visual quality of reconstructed images at low bit rate (below 0.25bpp).