F. Fomin, Sudeshna Kolay, D. Lokshtanov, Fahad Panolan, Saket Saurabh
{"title":"Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems","authors":"F. Fomin, Sudeshna Kolay, D. Lokshtanov, Fahad Panolan, Saket Saurabh","doi":"10.1145/3381420","DOIUrl":null,"url":null,"abstract":"A rectilinear Steiner tree for a set K of points in the plane is a tree that connects k using horizontal and vertical lines. In the Rectilinear Steiner Tree problem, the input is a set K={z1,z2,…, zn} of n points in the Euclidean plane (R2), and the goal is to find a rectilinear Steiner tree for k of smallest possible total length. A rectilinear Steiner arborescence for a set k of points and a root r ∈ K is a rectilinear Steiner tree T for K such that the path in T from r to any point z ∈ K is a shortest path. In the Rectilinear Steiner Arborescence problem, the input is a set K of n points in R2, and a root r ∈ K, and the task is to find a rectilinear Steiner arborescence for K, rooted at r of smallest possible total length. In this article, we design deterministic algorithms for these problems that run in 2O(√ nlog n) time.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3381420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
A rectilinear Steiner tree for a set K of points in the plane is a tree that connects k using horizontal and vertical lines. In the Rectilinear Steiner Tree problem, the input is a set K={z1,z2,…, zn} of n points in the Euclidean plane (R2), and the goal is to find a rectilinear Steiner tree for k of smallest possible total length. A rectilinear Steiner arborescence for a set k of points and a root r ∈ K is a rectilinear Steiner tree T for K such that the path in T from r to any point z ∈ K is a shortest path. In the Rectilinear Steiner Arborescence problem, the input is a set K of n points in R2, and a root r ∈ K, and the task is to find a rectilinear Steiner arborescence for K, rooted at r of smallest possible total length. In this article, we design deterministic algorithms for these problems that run in 2O(√ nlog n) time.