{"title":"Cost-effective high-yield manufacturing process of integrated passive devices (IPDs) for RF and microwave application","authors":"Cong Wang, Won Sang Lee, Nam-Young Kim","doi":"10.1109/MWSYM.2010.5517273","DOIUrl":null,"url":null,"abstract":"A novel fabrication process has been demonstrated to create cost-effective, high-yield, and high-quality integrated passive devices (IPDs) on GaAs substrate. Various materials and processing approaches to thin film resistors (TFRs), spiral inductors, and metal-insulator-metal (MIM) capacitors have been evaluated in terms of cost, yield, and device performance. To further reduce the total cost, SU-8 photo resist (PR) is firstly presented as a novel material for forming the final passivation layer. A digital cellular system (DCS) power divider is realized by this novel process and shows very good RF performances with the high yield and low cost in spite of its small chip size.","PeriodicalId":341557,"journal":{"name":"2010 IEEE MTT-S International Microwave Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE MTT-S International Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2010.5517273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A novel fabrication process has been demonstrated to create cost-effective, high-yield, and high-quality integrated passive devices (IPDs) on GaAs substrate. Various materials and processing approaches to thin film resistors (TFRs), spiral inductors, and metal-insulator-metal (MIM) capacitors have been evaluated in terms of cost, yield, and device performance. To further reduce the total cost, SU-8 photo resist (PR) is firstly presented as a novel material for forming the final passivation layer. A digital cellular system (DCS) power divider is realized by this novel process and shows very good RF performances with the high yield and low cost in spite of its small chip size.