MLResNet: An Efficient Method for Automatic Modulation Classification Based on Residual Neural Network

Mingqing Xue, Ming Huang, J. Yang, Ji Da Wu
{"title":"MLResNet: An Efficient Method for Automatic Modulation Classification Based on Residual Neural Network","authors":"Mingqing Xue, Ming Huang, J. Yang, Ji Da Wu","doi":"10.1109/ISCEIC53685.2021.00032","DOIUrl":null,"url":null,"abstract":"In the face of a complex electromagnetic environment, the modulation mode of communication signals is becoming increasingly complicated. Existing modulation mode recognition methods of communication signals cannot accurately and quickly identify the modulation mode of communication signals. In this letter, we propose an efficient architecture for automatic modulation classification (AMC) based on residual neural network (ResNet). We combine the improved residual neural network with long short-term memory network (LSTM) to obtain a new network structure (MLResNet), which solves the problems of gradient disappearance and too many parameters. In the experiments, MLResNet reaches the overall 24-modulation classification rate of 96.60% at 18 dB SNR on the well-known DeepSig dataset.","PeriodicalId":342968,"journal":{"name":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCEIC53685.2021.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the face of a complex electromagnetic environment, the modulation mode of communication signals is becoming increasingly complicated. Existing modulation mode recognition methods of communication signals cannot accurately and quickly identify the modulation mode of communication signals. In this letter, we propose an efficient architecture for automatic modulation classification (AMC) based on residual neural network (ResNet). We combine the improved residual neural network with long short-term memory network (LSTM) to obtain a new network structure (MLResNet), which solves the problems of gradient disappearance and too many parameters. In the experiments, MLResNet reaches the overall 24-modulation classification rate of 96.60% at 18 dB SNR on the well-known DeepSig dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于残差神经网络的调制自动分类方法MLResNet
面对复杂的电磁环境,通信信号的调制方式也变得越来越复杂。现有的通信信号调制方式识别方法不能准确、快速地识别通信信号的调制方式。在这篇文章中,我们提出了一种基于残差神经网络(ResNet)的有效的自动调制分类(AMC)架构。我们将改进的残差神经网络与长短期记忆网络(LSTM)相结合,得到了一种新的网络结构(MLResNet),解决了梯度消失和参数过多的问题。在实验中,MLResNet在著名的DeepSig数据集上,在18 dB信噪比下达到了96.60%的24调制分类率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Mechanical Zero Position Capture and Transfer of Steering Gear Based on Machine Vision Adaptive image watermarking algorithm based on visual characteristics Gaussian Image Denoising Method Based on the Dual Channel Deep Neural Network with the Skip Connection Design and Realization of Drum Level Control System for 300MW Unit New energy charging pile planning in residential area based on improved genetic algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1