{"title":"An adaptive approach to object-oriented real-time computing","authors":"E. Nett, M. Gergeleit, M. Mock","doi":"10.1109/ISORC.1998.666806","DOIUrl":null,"url":null,"abstract":"Real time computing is becoming an enabling technology for many important distributed applications such as flexible manufacturing, multimedia, robotics and process control. Traditionally, real time systems have been realized as isolated embedded systems. Unfortunately, this approach no longer suffices for future complex systems in the application scenarios mentioned above. In this situation, the use of an object oriented design paradigm greatly reduces the complexity of the system while improving reusability and manageability. Furthermore, the surrounding IT infrastructure is more and more accessible through object oriented interfaces (e.g. CORBA). In addition, object oriented modeling allows reflection of the dynamic characteristics of the applications mentioned above by instantiating objects dynamically. In order to meet the real time requirements in such an environment, static scheduling is not sufficient since many non predictable resource conflicts influence execution times. Therefore, the most distinguishing requirement of these complex heterogeneous systems is the need of the computing system to dynamically adapt to dynamically changing conditions. Little work has been done on integrating object oriented system design with resource allocation algorithms that are flexible enough to cope with this new requirement. The paper presents an approach for an adaptive object oriented system with integrated monitoring, dynamic execution time prediction and scheduling. It explains how this approach is applied to CORBA and C++.","PeriodicalId":186028,"journal":{"name":"Proceedings First International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC '98)","volume":"09 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings First International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC '98)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.1998.666806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
Real time computing is becoming an enabling technology for many important distributed applications such as flexible manufacturing, multimedia, robotics and process control. Traditionally, real time systems have been realized as isolated embedded systems. Unfortunately, this approach no longer suffices for future complex systems in the application scenarios mentioned above. In this situation, the use of an object oriented design paradigm greatly reduces the complexity of the system while improving reusability and manageability. Furthermore, the surrounding IT infrastructure is more and more accessible through object oriented interfaces (e.g. CORBA). In addition, object oriented modeling allows reflection of the dynamic characteristics of the applications mentioned above by instantiating objects dynamically. In order to meet the real time requirements in such an environment, static scheduling is not sufficient since many non predictable resource conflicts influence execution times. Therefore, the most distinguishing requirement of these complex heterogeneous systems is the need of the computing system to dynamically adapt to dynamically changing conditions. Little work has been done on integrating object oriented system design with resource allocation algorithms that are flexible enough to cope with this new requirement. The paper presents an approach for an adaptive object oriented system with integrated monitoring, dynamic execution time prediction and scheduling. It explains how this approach is applied to CORBA and C++.