Non-causal ARMA model identification by maximizing the kurtosis

J.-L. Vauttoux, E. Le Carpentier
{"title":"Non-causal ARMA model identification by maximizing the kurtosis","authors":"J.-L. Vauttoux, E. Le Carpentier","doi":"10.1109/HOST.1997.613522","DOIUrl":null,"url":null,"abstract":"The problem of estimating the parameters of a noncausal ARMA system, driven by an unobservable input noise is addressed. We propose a method based on a generalized version of the prediction error minimum variance approach and on the maximum kurtosis properties. Firstly, a spectrally equivalent (SE) model is identified with the generalized minimum variance approach. Secondly, the kurtosis allows us to identify the phase of the true model by localizing its zeros and poles from the SE model. Finally, we propose a new method which is a closed-loop form of the preceding method allowing to improve the accuracy of the parameter estimation and to obtain a better reconstruction of the estimated model phase. Simulation results seem to confirm the good behavior of the proposed methods compared to methods using higher order statistics.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The problem of estimating the parameters of a noncausal ARMA system, driven by an unobservable input noise is addressed. We propose a method based on a generalized version of the prediction error minimum variance approach and on the maximum kurtosis properties. Firstly, a spectrally equivalent (SE) model is identified with the generalized minimum variance approach. Secondly, the kurtosis allows us to identify the phase of the true model by localizing its zeros and poles from the SE model. Finally, we propose a new method which is a closed-loop form of the preceding method allowing to improve the accuracy of the parameter estimation and to obtain a better reconstruction of the estimated model phase. Simulation results seem to confirm the good behavior of the proposed methods compared to methods using higher order statistics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过最大化峰度的非因果ARMA模型识别
研究了由不可观测输入噪声驱动的非因果ARMA系统的参数估计问题。我们提出了一种基于广义的预测误差最小方差法和最大峰度特性的方法。首先,利用广义最小方差法辨识谱等效模型;其次,峰度允许我们通过定位SE模型的零点和极点来识别真实模型的相位。最后,我们提出了一种新的方法,该方法是前一种方法的闭环形式,可以提高参数估计的精度,并获得更好的估计模型相位的重建。与使用高阶统计量的方法相比,仿真结果似乎证实了所提出方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narrow band source separation in wide band context applications to array signal processing Higher-order statistics for tissue characterization from ultrasound images An iterative mixed norm image restoration algorithm Comparison between asymmetric generalized Gaussian (AGG) and symmetric-/spl alpha/-stable (S/spl alpha/S) noise models for signal estimation in non Gaussian environments Linear algebraic approaches for (almost) periodic moving average system identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1