Multivarible Symbolic Regression Based on Gene Expression Programming

Ming-fang Zhu, Jian-bin Zhang, Yan-ling Ren, Yu Pan, Guanghui Zhu
{"title":"Multivarible Symbolic Regression Based on Gene Expression Programming","authors":"Ming-fang Zhu, Jian-bin Zhang, Yan-ling Ren, Yu Pan, Guanghui Zhu","doi":"10.1109/ISCID.2011.177","DOIUrl":null,"url":null,"abstract":"This paper presents a method for multivarible symbolic regression modeling and predicting. The method based on gene expression programming, a recently proposed evolutionary computation technique. We explain in details the techniques of gene expression programming and multivarible symbolic regression with gene expression programming. Furthermore, we give an example to explain this technique, and experiment results show that the model set up by gene expression programming is better than statistiacal linear regression techniques.","PeriodicalId":224504,"journal":{"name":"2011 Fourth International Symposium on Computational Intelligence and Design","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2011.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a method for multivarible symbolic regression modeling and predicting. The method based on gene expression programming, a recently proposed evolutionary computation technique. We explain in details the techniques of gene expression programming and multivarible symbolic regression with gene expression programming. Furthermore, we give an example to explain this technique, and experiment results show that the model set up by gene expression programming is better than statistiacal linear regression techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于基因表达式编程的多变量符号回归
本文提出了一种多变量符号回归建模与预测方法。该方法基于最近提出的一种进化计算技术——基因表达式编程。详细介绍了基因表达式编程和多变量符号回归技术。实验结果表明,利用基因表达式编程建立的模型优于统计线性回归技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Public Electromagnetic Radiation Environment Comparison between China and Germany A Linear Camera Self-calibration Approach from Four Points Applications of Bayesian Network in Fault Diagnosis of Braking Deviation System Agent-Based Modelling and Simulation System for Mass Violence Event Intuitionistic Fuzzy Sets with Single Parameter and its Application to Pattern Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1