{"title":"A Novel Approach for Identification of Biomakers in Diabetic Retinopathy Recognition","authors":"P. Rayavel, C. Murukesh","doi":"10.1166/jmihi.2022.3934","DOIUrl":null,"url":null,"abstract":"In the emergence of anti-Antivascular endothelial growth factor (VEGF) drugs such as ranibizumab and bevacizumab, it has become obvious that the presence of outer retinal and subretinal fluid is the primary signal of the need for anti-VEGF therapy, and used to identify disease activity\n and assist diabetic retinopathy treatment. Despite advancements in diabetic retinopathy (DR) treatments, early detection is critical for DR management and remains a significant barrier. Clinical DR can be distinguished from non proliferative DR without visible vision loss and vision-threatening\n consequences such as macular edoema and proliferative retinopathy by retinal alterations in diabetes. The proposed method aggrandize the process of accurate detection of biomakers responsible for higher risk of diabetic retinopathy development in color fundus images. Furthermore, the proposed\n approach could be employed to quantify these lesions and their distributions efficientively as evident in the experimentation results.","PeriodicalId":393031,"journal":{"name":"J. Medical Imaging Health Informatics","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Medical Imaging Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jmihi.2022.3934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In the emergence of anti-Antivascular endothelial growth factor (VEGF) drugs such as ranibizumab and bevacizumab, it has become obvious that the presence of outer retinal and subretinal fluid is the primary signal of the need for anti-VEGF therapy, and used to identify disease activity
and assist diabetic retinopathy treatment. Despite advancements in diabetic retinopathy (DR) treatments, early detection is critical for DR management and remains a significant barrier. Clinical DR can be distinguished from non proliferative DR without visible vision loss and vision-threatening
consequences such as macular edoema and proliferative retinopathy by retinal alterations in diabetes. The proposed method aggrandize the process of accurate detection of biomakers responsible for higher risk of diabetic retinopathy development in color fundus images. Furthermore, the proposed
approach could be employed to quantify these lesions and their distributions efficientively as evident in the experimentation results.