{"title":"Robotic Fabrication Process of Glued Laminated Bamboo for Material Efficient Construction","authors":"C. Cheng, Yu-Ting Sheng, Shih-Yuan Wang","doi":"10.52842/conf.caadria.2022.2.213","DOIUrl":null,"url":null,"abstract":". This paper aims to introduce the development of a new-style glue-laminated bamboo (GLB) board structure and evaluating computational technologies aiming to enhance the performance of fibre materials and a set of digital manufacturing processes. Specifically, this paper develops a method to introduce the concept of topology optimisation into the properties of fibre materials. At the same time, it explains the unique structure optimisation design and manufacturing process (including the design process, digital tools and auxiliary equipment system). To test the design, this paper compares the data obtained via the gravity suspension test of the physical model and the simulation. Through digital manufacturing methods, the project aims to establish structural elements that could improve material efficiency. Furthermore, it may establish a GLB floor structure system in line with the material economy.","PeriodicalId":281741,"journal":{"name":"CAADRIA proceedings","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAADRIA proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52842/conf.caadria.2022.2.213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
. This paper aims to introduce the development of a new-style glue-laminated bamboo (GLB) board structure and evaluating computational technologies aiming to enhance the performance of fibre materials and a set of digital manufacturing processes. Specifically, this paper develops a method to introduce the concept of topology optimisation into the properties of fibre materials. At the same time, it explains the unique structure optimisation design and manufacturing process (including the design process, digital tools and auxiliary equipment system). To test the design, this paper compares the data obtained via the gravity suspension test of the physical model and the simulation. Through digital manufacturing methods, the project aims to establish structural elements that could improve material efficiency. Furthermore, it may establish a GLB floor structure system in line with the material economy.