Adaptive Backpropagation Algorithm for Clustered Indoor Motion Planning

K. Vennela, Balaji B, M. Chinnaiah, K. Srinivasarao
{"title":"Adaptive Backpropagation Algorithm for Clustered Indoor Motion Planning","authors":"K. Vennela, Balaji B, M. Chinnaiah, K. Srinivasarao","doi":"10.1109/CONIT55038.2022.9848410","DOIUrl":null,"url":null,"abstract":"Grid based navigation is the simplest navigation methodology for unmanned ground vehicles (UGV) particularly for indoors. The grid map formation, grid cell occupancy, self-localization and avoiding obstacles in derived path are major considerations in navigation. This research work elaborate a new strategy of mobile robot navigation to goal point using an Adaptive Backpropagation tree based algorithm. For a confined stopping point like a charging station for an autonomous vehicles, this work provide minimal solution to reach that point. The path exploration begin from the stop point rather than the start point where robot is located. This backpropagation strategy implemented in real time scenario for its effectiveness. The simulation and experimental results gives the scope for robotic applications such as advance to stationary parking point or charging point.","PeriodicalId":270445,"journal":{"name":"2022 2nd International Conference on Intelligent Technologies (CONIT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Intelligent Technologies (CONIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIT55038.2022.9848410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Grid based navigation is the simplest navigation methodology for unmanned ground vehicles (UGV) particularly for indoors. The grid map formation, grid cell occupancy, self-localization and avoiding obstacles in derived path are major considerations in navigation. This research work elaborate a new strategy of mobile robot navigation to goal point using an Adaptive Backpropagation tree based algorithm. For a confined stopping point like a charging station for an autonomous vehicles, this work provide minimal solution to reach that point. The path exploration begin from the stop point rather than the start point where robot is located. This backpropagation strategy implemented in real time scenario for its effectiveness. The simulation and experimental results gives the scope for robotic applications such as advance to stationary parking point or charging point.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚类室内运动规划的自适应反向传播算法
基于网格的导航是无人地面车辆(UGV)最简单的导航方法,特别是在室内。网格地图的形成、网格单元的占用、自定位和在导出路径中避开障碍物是导航的主要考虑因素。本研究提出了一种基于自适应反向传播树算法的移动机器人目标点导航新策略。对于像自动驾驶汽车的充电站这样的受限停车点,这项工作提供了到达该点的最小解决方案。路径探索从停止点开始,而不是从机器人所在的起点开始。由于该反向传播策略的有效性,在实时场景中实现了该策略。仿真和实验结果为机器人推进到固定停车点或充电点等应用提供了空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Software Bug Prediction and Tracing Models from a Statistical Perspective Using Machine Learning Design & Simulation of a High Frequency Rectifier Using Operational Amplifier Brain Tumor Detection Application Based On Convolutional Neural Network Classification of Brain Tumor Into Four Categories Using Convolution Neural Network Comparison of Variants of Yen's Algorithm for Finding K-Simple Shortest Paths
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1