HeatPipe: High Throughput, Low Latency Big Data Heatmap with Spark Streaming

Alexandre Perrot, Romain Bourqui, N. Hanusse, D. Auber
{"title":"HeatPipe: High Throughput, Low Latency Big Data Heatmap with Spark Streaming","authors":"Alexandre Perrot, Romain Bourqui, N. Hanusse, D. Auber","doi":"10.1109/iV.2017.45","DOIUrl":null,"url":null,"abstract":"Heatmap visualization is a well-known type of visualization to alleviate the overplot problem of point visualization. As such, it is well suited to visualize Big Data. In order to tackle the velocity problem of Big Data, one has to leverage streaming computations. Recently, canopy clustering was shown to be well suited for Big Data heatmap visualization. In this article, we present how to design a streaming algorithm to compute canopy clustering using Apache Spark. This result is directly applicable to be included into a lambda architecture.","PeriodicalId":410876,"journal":{"name":"2017 21st International Conference Information Visualisation (IV)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iV.2017.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Heatmap visualization is a well-known type of visualization to alleviate the overplot problem of point visualization. As such, it is well suited to visualize Big Data. In order to tackle the velocity problem of Big Data, one has to leverage streaming computations. Recently, canopy clustering was shown to be well suited for Big Data heatmap visualization. In this article, we present how to design a streaming algorithm to compute canopy clustering using Apache Spark. This result is directly applicable to be included into a lambda architecture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HeatPipe:高吞吐量,低延迟的大数据热图与Spark流
热图可视化是一种众所周知的可视化类型,它可以缓解点可视化的覆盖问题。因此,它非常适合可视化大数据。为了解决大数据的速度问题,必须利用流计算。最近,冠层聚类被证明非常适合于大数据热图可视化。在本文中,我们介绍了如何使用Apache Spark设计一个流算法来计算树冠集群。这个结果可以直接应用到lambda架构中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Haptic User Interface to Assess the Mobility of the Newborn's Neck Deciphering Gene Sets Annotations with Ontology Based Visualization Acceptance and Usability of Interactive Infographics in Online Newspapers CHR-Graph: A Platform for Animating Tree and Graph Algorithms The Role of Perspective Cues in RSVP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1