Machine-learning approach to analysis of driving simulation data

Akira Yoshizawa, Hiroyuki Nishiyama, H. Iwasaki, F. Mizoguchi
{"title":"Machine-learning approach to analysis of driving simulation data","authors":"Akira Yoshizawa, Hiroyuki Nishiyama, H. Iwasaki, F. Mizoguchi","doi":"10.1109/ICCI-CC.2016.7862067","DOIUrl":null,"url":null,"abstract":"In our study, we sought to generate rules for cognitive distractions of car drivers using data from a driving simulation environment. We collected drivers' eye-movement and driving data from 18 research participants using a simulator. Each driver drove the same 15-minute course two times. The first drive was normal driving (no-load driving), and the second drive was driving with a mental arithmetic task (load driving), which we defined as cognitive-distraction driving. To generate rules of distraction driving using a machine-learning tool, we transformed the data at constant time intervals to generate qualitative data for learning. Finally, we generated rules using a Support Vector Machine (SVM).","PeriodicalId":135701,"journal":{"name":"2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2016.7862067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In our study, we sought to generate rules for cognitive distractions of car drivers using data from a driving simulation environment. We collected drivers' eye-movement and driving data from 18 research participants using a simulator. Each driver drove the same 15-minute course two times. The first drive was normal driving (no-load driving), and the second drive was driving with a mental arithmetic task (load driving), which we defined as cognitive-distraction driving. To generate rules of distraction driving using a machine-learning tool, we transformed the data at constant time intervals to generate qualitative data for learning. Finally, we generated rules using a Support Vector Machine (SVM).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
驾驶模拟数据分析的机器学习方法
在我们的研究中,我们试图使用来自驾驶模拟环境的数据来生成汽车驾驶员认知分心的规则。我们使用模拟器收集了18名研究参与者的眼球运动和驾驶数据。每名司机在同一条15分钟的路线上行驶两次。第一个驱动是正常驾驶(空载驾驶),第二个驱动是带心算任务驾驶(载驾驶),我们将其定义为认知分心驾驶。为了使用机器学习工具生成分心驾驶规则,我们以恒定的时间间隔转换数据以生成用于学习的定性数据。最后,我们使用支持向量机(SVM)生成规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous robot controller using bitwise gibbs sampling Learnings and innovations in speech recognition Qualitative analysis of pre-performance routines in throwing using simple brain-wave sensor Improving pattern classification by nonlinearly combined classifiers Feature extraction of video using deep neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1