{"title":"Encoder Re-training with Mixture Signals on FastMVAE Method","authors":"Shuhei Yamaji, Taishi Nakashima, Nobutaka Ono, Li Li, H. Kameoka","doi":"10.23919/APSIPAASC55919.2022.9979843","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new network training to improve the source separation performance of the fast multichannel variational autoencoder (FastMVAE) method. The FastMVAE method is very effective for supervised source separation. It also significantly reduces the processing time by replacing the backpropagation steps in the MVAE method with a single forward propagation of the encoder for estimating latent variables. In previous studies, the encoder is trained together with the decoder using clean speech. In contrast, in this study, we re-train only the encoder by using the mixed signals with the decoder fixed. More specifically, using the imperfectly separated signals obtained in the process of the source separation algorithm, we train the encoder to find the optimal latent variables that minimize the objective function for source separation. Experimental results show that the proposed method reduces the objective function at almost every iteration and achieves higher separation performance than the conventional method.","PeriodicalId":382967,"journal":{"name":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPAASC55919.2022.9979843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new network training to improve the source separation performance of the fast multichannel variational autoencoder (FastMVAE) method. The FastMVAE method is very effective for supervised source separation. It also significantly reduces the processing time by replacing the backpropagation steps in the MVAE method with a single forward propagation of the encoder for estimating latent variables. In previous studies, the encoder is trained together with the decoder using clean speech. In contrast, in this study, we re-train only the encoder by using the mixed signals with the decoder fixed. More specifically, using the imperfectly separated signals obtained in the process of the source separation algorithm, we train the encoder to find the optimal latent variables that minimize the objective function for source separation. Experimental results show that the proposed method reduces the objective function at almost every iteration and achieves higher separation performance than the conventional method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FastMVAE方法的混合信号编码器再训练
为了提高快速多通道变分自编码器(FastMVAE)方法的信源分离性能,提出了一种新的网络训练方法。FastMVAE方法对于监督源分离是非常有效的。它还通过将MVAE方法中的反向传播步骤替换为编码器的单个前向传播步骤来估计潜在变量,从而显着减少了处理时间。在以往的研究中,编码器和解码器是一起训练的,使用干净的语音。相比之下,在本研究中,我们使用固定解码器的混合信号只重新训练编码器。更具体地说,我们利用源分离算法过程中得到的不完全分离信号,训练编码器找到使源分离目标函数最小的最优潜变量。实验结果表明,该方法几乎在每次迭代中都能降低目标函数,并取得了比传统方法更高的分离性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Re-examination of Method of Kinetic Analysis on the Rate of Stepwise Reduction of a Single Sinter Particle with CO-CO2-N2 Gas Mixture
IF 1.8 4区 材料科学Isij InternationalPub Date : 1991-05-15 DOI: 10.2355/ISIJINTERNATIONAL.31.425
T. Usui, M. Ohmi, Shinji Kaneda, Mitsushi Ohmasa, Z. Morita
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-class Vehicle Counting System for Multi-view Traffic Videos Optimal Deep Multi-Route Self-Attention for Single Image Super-Resolution Distance Estimation Between Camera and Vehicles from an Image using YOLO and Machine Learning ASGAN-VC: One-Shot Voice Conversion with Additional Style Embedding and Generative Adversarial Networks PVGCRA: Prediction Variance Guided Cross Region Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1