{"title":"A case study of the profit-maximizing multi-vehicle pickup and delivery selection problem for the road networks with the integratable nodes","authors":"Aolong Zha, Qi Chang, Naoto Imura, K. Nishinari","doi":"10.48550/arXiv.2208.14866","DOIUrl":null,"url":null,"abstract":"This paper is a study of an application-based model in profit-maximizing multi-vehicle pickup and delivery selection problem (PPDSP). The graph-theoretic model proposed by existing studies of PPDSP is based on transport requests to define the corresponding nodes (i.e., each request corresponds to a pickup node and a delivery node). In practice, however, there are probably multiple requests coming from or going to an identical location. Considering the road networks with the integratable nodes as above, we define a new model based on the integrated nodes for the corresponding PPDSP and propose a novel mixed-integer formulation. In comparative experiments with the existing formulation, as the number of integratable nodes increases, our method has a clear advantage in terms of the number of variables as well as the number of constraints required in the generated instances, and the accuracy of the optimized solution obtained within a given time.","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Conceptual Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.14866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is a study of an application-based model in profit-maximizing multi-vehicle pickup and delivery selection problem (PPDSP). The graph-theoretic model proposed by existing studies of PPDSP is based on transport requests to define the corresponding nodes (i.e., each request corresponds to a pickup node and a delivery node). In practice, however, there are probably multiple requests coming from or going to an identical location. Considering the road networks with the integratable nodes as above, we define a new model based on the integrated nodes for the corresponding PPDSP and propose a novel mixed-integer formulation. In comparative experiments with the existing formulation, as the number of integratable nodes increases, our method has a clear advantage in terms of the number of variables as well as the number of constraints required in the generated instances, and the accuracy of the optimized solution obtained within a given time.