Influence of Convolutional Neural Network Depth on the Efficacy of Automated Breast Cancer Screening Systems

Vineela Nalla, Seyedamin Pouriyeh, R. Parizi, Inchan Hwang, Beatrice Brown-Mulry, Linglin Zhang, Minjae Woo
{"title":"Influence of Convolutional Neural Network Depth on the Efficacy of Automated Breast Cancer Screening Systems","authors":"Vineela Nalla, Seyedamin Pouriyeh, R. Parizi, Inchan Hwang, Beatrice Brown-Mulry, Linglin Zhang, Minjae Woo","doi":"10.1109/ISCC58397.2023.10217947","DOIUrl":null,"url":null,"abstract":"Breast cancer is a global health concern for women. The detection of breast cancer in its early stages is crucial, and screening mammography serves as a vital leading-edge tool for achieving this goal. In this study, we explored the effectiveness of Resnet 50v2 and Resnet 152v2 deep learning models for classifying mammograms using EMBED datasets for the first time. We preprocessed the datasets and utilized various techniques to enhance the performance of the models. Our results suggest that the choice of model architecture depends on the dataset used, with ResNet152 outperforming ResNet50 in terms of recall score. These findings have implications for cancer screening, where recall is an important metric. Our research highlights the potential of deep learning to improve breast cancer classification and underscores the importance of selecting the appropriate model architecture.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10217947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is a global health concern for women. The detection of breast cancer in its early stages is crucial, and screening mammography serves as a vital leading-edge tool for achieving this goal. In this study, we explored the effectiveness of Resnet 50v2 and Resnet 152v2 deep learning models for classifying mammograms using EMBED datasets for the first time. We preprocessed the datasets and utilized various techniques to enhance the performance of the models. Our results suggest that the choice of model architecture depends on the dataset used, with ResNet152 outperforming ResNet50 in terms of recall score. These findings have implications for cancer screening, where recall is an important metric. Our research highlights the potential of deep learning to improve breast cancer classification and underscores the importance of selecting the appropriate model architecture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络深度对自动化乳腺癌筛查系统效果的影响
乳腺癌是全球关注的妇女健康问题。在早期阶段发现乳腺癌是至关重要的,而筛查乳房x光检查是实现这一目标的重要前沿工具。在这项研究中,我们首次探索了Resnet 50v2和Resnet 152v2深度学习模型在使用EMBED数据集对乳房x线照片进行分类的有效性。我们对数据集进行预处理,并利用各种技术来提高模型的性能。我们的结果表明,模型架构的选择取决于所使用的数据集,在召回得分方面,ResNet152优于ResNet50。这些发现对癌症筛查具有启示意义,在癌症筛查中,回忆率是一个重要指标。我们的研究强调了深度学习在改善乳腺癌分类方面的潜力,并强调了选择合适的模型架构的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
(POSTER) Advanced LTCC-Integrated Technologies for mmWave 5G/Satellite Communication Antennas Multiple Information Extraction and Interaction for Emotion Recognition in Multi-Party Conversation A GRASP-Based Algorithm for Virtual Network Embedding Designing Healthcare Relational Agents: A Conceptual Framework with User-Centered Design Guidelines Analysis of One-Bit DAC for RIS-Assisted MU Massive MIMO Systems with Efficient Autoencoder Based Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1