A merging Fuzzy ART clustering algorithm for overlapping data

L. Mak, G. Ng, Godfrey Lim, K. Mao
{"title":"A merging Fuzzy ART clustering algorithm for overlapping data","authors":"L. Mak, G. Ng, Godfrey Lim, K. Mao","doi":"10.1109/FOCI.2011.5949461","DOIUrl":null,"url":null,"abstract":"Real-world datasets usually involve class overlap. It has been observed that, in general, the performance of clustering algorithms degrade with the increasing overlapping degree. The main challenge for clustering overlapping data is the determination of the appropriate number of clusters and division of the overlapping region. This paper proposes a novel method based on Fuzzy ART clustering to handle the overlapping data without demanding a priori the number of clusters. With the use of over-clustering and merging mechanism, Merging Fuzzy ART (MFuART) generates the number of clusters automatically and with good cluster quality.","PeriodicalId":106271,"journal":{"name":"2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCI.2011.5949461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Real-world datasets usually involve class overlap. It has been observed that, in general, the performance of clustering algorithms degrade with the increasing overlapping degree. The main challenge for clustering overlapping data is the determination of the appropriate number of clusters and division of the overlapping region. This paper proposes a novel method based on Fuzzy ART clustering to handle the overlapping data without demanding a priori the number of clusters. With the use of over-clustering and merging mechanism, Merging Fuzzy ART (MFuART) generates the number of clusters automatically and with good cluster quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重叠数据的融合模糊ART聚类算法
现实世界的数据集通常涉及类重叠。已经观察到,一般情况下,聚类算法的性能随着重叠程度的增加而下降。对重叠数据进行聚类的主要挑战是确定合适的聚类数量和划分重叠区域。本文提出了一种基于模糊ART聚类的新方法来处理重叠数据,而不需要先验的聚类数量。合并模糊艺术(MFuART)利用超聚类和合并机制,自动生成簇数,具有良好的簇质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test error bounds for classifiers: A survey of old and new results Bistable memory and binary counters in spiking neural network Decision making with probabilities, weighted averages and OWA operators Fuzzy rule based networks On the use of fuzzy stable models for inconsistent classical logic programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1