Cellular-Level Characterization of Dengue and Zika Virus Infection Using Multiagent Simulation

A. Alvarado, Ricardo Corrales, Maria José Soares Leal, A. Ossa, R. Mora, Manuel Arroyo, Andrea Gomez, Alan Calderon, Jorge L. Arias-Arias
{"title":"Cellular-Level Characterization of Dengue and Zika Virus Infection Using Multiagent Simulation","authors":"A. Alvarado, Ricardo Corrales, Maria José Soares Leal, A. Ossa, R. Mora, Manuel Arroyo, Andrea Gomez, Alan Calderon, Jorge L. Arias-Arias","doi":"10.1109/IWOBI.2018.8464219","DOIUrl":null,"url":null,"abstract":"In this paper we present a computational model aimed at characterizing the Zika viral infection at a cellular level based on measurements done on viral Dulbecco plaques over time, and describe our current state of progress in the modeling task. So far we have developed an agent-based simulation model of the dispersion of the virus on the cells conforming the viral plaque. The growth rate of the viral plaques and the number of cells counted on each plaque were used to characterize the viral infection in terms of parameters related to the fate of infected cells, such as the probability of a cell infecting its neighboring cells and the probability of an infected cell of dying at any given moment. The model can be used to predict viral plaque growth patterns similar to those observed in the laboratory. Our current efforts focus on optimizing the model parameters to fit the experimental data. Further development of the model includes the description of viral infection kinetics of specific viral strains. Our model has been developed using the agent-based modeling language Netlogo [1].","PeriodicalId":127078,"journal":{"name":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2018.8464219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present a computational model aimed at characterizing the Zika viral infection at a cellular level based on measurements done on viral Dulbecco plaques over time, and describe our current state of progress in the modeling task. So far we have developed an agent-based simulation model of the dispersion of the virus on the cells conforming the viral plaque. The growth rate of the viral plaques and the number of cells counted on each plaque were used to characterize the viral infection in terms of parameters related to the fate of infected cells, such as the probability of a cell infecting its neighboring cells and the probability of an infected cell of dying at any given moment. The model can be used to predict viral plaque growth patterns similar to those observed in the laboratory. Our current efforts focus on optimizing the model parameters to fit the experimental data. Further development of the model includes the description of viral infection kinetics of specific viral strains. Our model has been developed using the agent-based modeling language Netlogo [1].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多agent模拟登革热和寨卡病毒感染的细胞水平表征
在本文中,我们提出了一个计算模型,旨在基于对病毒Dulbecco斑块随时间的测量,在细胞水平上表征寨卡病毒感染,并描述了我们目前在建模任务中的进展状态。到目前为止,我们已经开发了一种基于代理的病毒在符合病毒斑块的细胞上分散的模拟模型。病毒斑块的生长速度和每个斑块上计数的细胞数量被用来根据与感染细胞命运相关的参数来表征病毒感染,例如细胞感染邻近细胞的概率和被感染细胞在任何给定时刻死亡的概率。该模型可用于预测类似于在实验室观察到的病毒斑块生长模式。我们目前的工作重点是优化模型参数以拟合实验数据。该模型的进一步发展包括对特定病毒株的病毒感染动力学的描述。我们的模型是使用基于代理的建模语言Netlogo[1]开发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Placement of a Two-Arm Assembly for An Everyday Object Manipulation Humanoid Robot Based on Capability Maps Modules of Correlated Genes in a Gene Expression Regulatory Network of CDDP-Resistant Cancer Cells 2018 IEEE International Work Conference on Bioinspired Intelligence Parallelization of a Denoising Algorithm for Tonal Bioacoustic Signals Using OpenACC Directives Genome Copy Number Feature Selection Based on Chromosomal Regions Alterations and Chemosensitivity Subtypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1