{"title":"Thermal modeling for 3D-ICs with integrated microchannel cooling","authors":"H. Mizunuma, Chia-Lin Yang, Yi-Chang Lu","doi":"10.1145/1687399.1687447","DOIUrl":null,"url":null,"abstract":"Integrated microchannel liquid-cooling technology is envisioned as a viable solution to alleviate an increasing thermal stress imposed by 3D stacked ICs. Thermal modeling for microchannel cooling is challenging due to its complicated thermal-wake effect, a localized temperature wake phenomenon downstream of a heated source in the flow. This paper presents a fast and accurate thermal-wake aware thermal model for integrated microchannel 3D ICs. Validation results show the proposed thermal model achieves more than 400× speed up and only 2.0% error in comparison with a commercial numerical simulation tool. We also demonstrate the use of the proposed thermal model for thermal optimization during the IC placement stage. We find that due to the thermal-wake effect, tiles are placed in the descending order of power magnitude along the flow direction. We also find that modeling thermal-wakes is critical for generating a thermal-aware placement for integrated microchannel-cooled 3D IC. It could result in up to 25°C peak temperature difference according to our experiments.","PeriodicalId":256358,"journal":{"name":"2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1687399.1687447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56
Abstract
Integrated microchannel liquid-cooling technology is envisioned as a viable solution to alleviate an increasing thermal stress imposed by 3D stacked ICs. Thermal modeling for microchannel cooling is challenging due to its complicated thermal-wake effect, a localized temperature wake phenomenon downstream of a heated source in the flow. This paper presents a fast and accurate thermal-wake aware thermal model for integrated microchannel 3D ICs. Validation results show the proposed thermal model achieves more than 400× speed up and only 2.0% error in comparison with a commercial numerical simulation tool. We also demonstrate the use of the proposed thermal model for thermal optimization during the IC placement stage. We find that due to the thermal-wake effect, tiles are placed in the descending order of power magnitude along the flow direction. We also find that modeling thermal-wakes is critical for generating a thermal-aware placement for integrated microchannel-cooled 3D IC. It could result in up to 25°C peak temperature difference according to our experiments.