{"title":"Sectum: Accurate Latency Prediction for TEE-hosted Deep Learning Inference","authors":"Yan Li, Junming Ma, Donggang Cao, Hong Mei","doi":"10.1109/ICDCS54860.2022.00092","DOIUrl":null,"url":null,"abstract":"As the security issue of cloud-offloaded Deep Learning (DL) inference is drawing increasing attention, running DL inference in Trusted Execution Environments (TEEs) has become a common practice. Latency prediction of TEE-hosted DL model inference is essential for many scenarios, such as DNN model architecture searching with a latency constraint or layer scheduling in model-parallelism inference. However, existing solutions fail to address the memory over-commitment issue in resource-constrained environments inside TEEs.This paper presents Sectum, an accurate latency predictor for DL inference inside TEE enclaves. We first perform a synthetic empirical study to analyze the relationship between inference latency and memory occupation. Sectum predicts inference latency following a two-stage design based on some critical observations. First, Sectum uses a Graph Neural Network (GNN)-based model to detect whether a given model would trigger memory over-commitment in TEEs. Then, combining operator-level latency modeling with linear regression, Sectum could predict the latency of a model. To evaluate Sectum, we design a large dataset that contains the latency information of over 6k CNN models. Our experiments demonstrate that Sectum could achieve over 85% ±10% accuracy of latency prediction. To our knowledge, Sectum is the first method to predict TEE-hosted DL inference latency accurately.","PeriodicalId":225883,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS54860.2022.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
As the security issue of cloud-offloaded Deep Learning (DL) inference is drawing increasing attention, running DL inference in Trusted Execution Environments (TEEs) has become a common practice. Latency prediction of TEE-hosted DL model inference is essential for many scenarios, such as DNN model architecture searching with a latency constraint or layer scheduling in model-parallelism inference. However, existing solutions fail to address the memory over-commitment issue in resource-constrained environments inside TEEs.This paper presents Sectum, an accurate latency predictor for DL inference inside TEE enclaves. We first perform a synthetic empirical study to analyze the relationship between inference latency and memory occupation. Sectum predicts inference latency following a two-stage design based on some critical observations. First, Sectum uses a Graph Neural Network (GNN)-based model to detect whether a given model would trigger memory over-commitment in TEEs. Then, combining operator-level latency modeling with linear regression, Sectum could predict the latency of a model. To evaluate Sectum, we design a large dataset that contains the latency information of over 6k CNN models. Our experiments demonstrate that Sectum could achieve over 85% ±10% accuracy of latency prediction. To our knowledge, Sectum is the first method to predict TEE-hosted DL inference latency accurately.