Cross-modal Collaborative Manifold Propagation for Image Recommendation

Meng Jian, Ting Jia, Xun Yang, Lifang Wu, Lina Huo
{"title":"Cross-modal Collaborative Manifold Propagation for Image Recommendation","authors":"Meng Jian, Ting Jia, Xun Yang, Lifang Wu, Lina Huo","doi":"10.1145/3323873.3325054","DOIUrl":null,"url":null,"abstract":"With the rapid evolution of social networks, the increasing user intention gap and visual semantic gap both bring great challenge for users to access satisfied contents. It becomes promising to investigate users' customized multimedia recommendation. In this paper, we propose cross-modal collaborative manifold propagation (CMP) for image recommendation. CMP leverages users' interest distribution to propagate images' user records, which lets users know the trend from others and produces interest-aware image candidates upon users' interests. Visual distribution is investigated simultaneously to propagate users' visual records along dense semantic visual manifold. Visual manifold propagation helps to estimate semantic accurate user-image correlations for the candidate images in recommendation ranking. Experimental performance demonstrate the collaborative user-image inferring ability of CMP with effective user interest manifold propagation and semantic visual manifold propagation in personalized image recommendation.","PeriodicalId":149041,"journal":{"name":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323873.3325054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the rapid evolution of social networks, the increasing user intention gap and visual semantic gap both bring great challenge for users to access satisfied contents. It becomes promising to investigate users' customized multimedia recommendation. In this paper, we propose cross-modal collaborative manifold propagation (CMP) for image recommendation. CMP leverages users' interest distribution to propagate images' user records, which lets users know the trend from others and produces interest-aware image candidates upon users' interests. Visual distribution is investigated simultaneously to propagate users' visual records along dense semantic visual manifold. Visual manifold propagation helps to estimate semantic accurate user-image correlations for the candidate images in recommendation ranking. Experimental performance demonstrate the collaborative user-image inferring ability of CMP with effective user interest manifold propagation and semantic visual manifold propagation in personalized image recommendation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像推荐的跨模态协同流形传播
随着社交网络的快速发展,越来越大的用户意图差距和视觉语义差距都给用户访问满意的内容带来了巨大的挑战。用户自定义多媒体推荐的研究已成为研究的热点。本文提出了一种用于图像推荐的跨模态协同流形传播(CMP)方法。CMP利用用户的兴趣分布来传播图像的用户记录,让用户从其他人那里知道趋势,并根据用户的兴趣产生感兴趣的候选图像。同时研究视觉分布,使用户的视觉记录沿着密集的语义视觉流形传播。视觉流形传播有助于在推荐排序中准确估计候选图像的语义相关性。实验证明了CMP在个性化图像推荐中具有有效的用户兴趣流形传播和语义视觉流形传播的协同用户图像推断能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EAGER Multimodal Multimedia Retrieval with vitrivr RobustiQ: A Robust ANN Search Method for Billion-scale Similarity Search on GPUs Improving What Cross-Modal Retrieval Models Learn through Object-Oriented Inter- and Intra-Modal Attention Networks DeepMarks: A Secure Fingerprinting Framework for Digital Rights Management of Deep Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1