Hashing-Based-Estimators for Kernel Density in High Dimensions

M. Charikar, Paris Siminelakis
{"title":"Hashing-Based-Estimators for Kernel Density in High Dimensions","authors":"M. Charikar, Paris Siminelakis","doi":"10.1109/FOCS.2017.99","DOIUrl":null,"url":null,"abstract":"Given a set of points P⊄ R^d and a kernel k, the Kernel Density Estimate at a point x∊R^d is defined as \\mathrm{KDE}_{P}(x)=\\frac{1}{|P|}\\sum_{y\\in P} k(x,y). We study the problem of designing a data structure that given a data set P and a kernel function, returns approximations to the kernel density} of a query point in sublinear time}. We introduce a class of unbiased estimators for kernel density implemented through locality-sensitive hashing, and give general theorems bounding the variance of such estimators. These estimators give rise to efficient data structures for estimating the kernel density in high dimensions for a variety of commonly used kernels. Our work is the first to provide data-structures with theoretical guarantees that improve upon simple random sampling in high dimensions.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

Abstract

Given a set of points P⊄ R^d and a kernel k, the Kernel Density Estimate at a point x∊R^d is defined as \mathrm{KDE}_{P}(x)=\frac{1}{|P|}\sum_{y\in P} k(x,y). We study the problem of designing a data structure that given a data set P and a kernel function, returns approximations to the kernel density} of a query point in sublinear time}. We introduce a class of unbiased estimators for kernel density implemented through locality-sensitive hashing, and give general theorems bounding the variance of such estimators. These estimators give rise to efficient data structures for estimating the kernel density in high dimensions for a variety of commonly used kernels. Our work is the first to provide data-structures with theoretical guarantees that improve upon simple random sampling in high dimensions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维核密度的哈希估计
给定一组点P⊄R^d和一个核k,在点x∊R^d的核密度估计定义为\mathrm{KDE} _P{(x)= }\frac{1}{|P|}\sum _y{\in P }k(x,y)。我们研究了设计一个数据结构的问题,给定一个数据集P和一个核函数,返回查询点在亚线性时间内的核密度的近似值。我们引入了一类通过位置敏感哈希实现的核密度无偏估计,并给出了该类估计方差的一般定理。这些估计器为估计各种常用核的高维核密度提供了有效的数据结构。我们的工作是第一个提供具有理论保证的数据结构,改进了高维的简单随机抽样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Learning Mixtures of Well-Separated Gaussians Obfuscating Compute-and-Compare Programs under LWE Minor-Free Graphs Have Light Spanners Lockable Obfuscation How to Achieve Non-Malleability in One or Two Rounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1