LightBulb: A Photonic-Nonvolatile-Memory-based Accelerator for Binarized Convolutional Neural Networks

Farzaneh Zokaee, Qian Lou, N. Youngblood, Weichen Liu, Yiyuan Xie, Lei Jiang
{"title":"LightBulb: A Photonic-Nonvolatile-Memory-based Accelerator for Binarized Convolutional Neural Networks","authors":"Farzaneh Zokaee, Qian Lou, N. Youngblood, Weichen Liu, Yiyuan Xie, Lei Jiang","doi":"10.23919/DATE48585.2020.9116494","DOIUrl":null,"url":null,"abstract":"Although Convolutional Neural Networks (CNNs) have demonstrated the state-of-the-art inference accuracy in various intelligent applications, each CNN inference involves millions of expensive floating point multiply-accumulate (MAC) operations. To energy-efficiently process CNN inferences, prior work proposes an electro-optical accelerator to process power-of-2 quantized CNNs by electro-optical ripple-carry adders and optical binary shifters. The electro-optical accelerator also uses SRAM registers to store intermediate data. However, electro-optical ripple-carry adders and SRAMs seriously limit the operating frequency and inference throughput of the electro-optical accelerator, due to the long critical path of the adder and the long access latency of SRAMs. In this paper, we propose a photonic nonvolatile memory (NVM)-based accelerator, Light-Bulb, to process binarized CNNs by high frequency photonic XNOR gates and popcount units. LightBulb also adopts photonic racetrack memory to serve as input/output registers to achieve high operating frequency. Compared to prior electro-optical accelerators, on average, LightBulb improves the CNN inference throughput by 17× ~ 173× and the inference throughput per Watt by 17.5 × ~ 660×.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Although Convolutional Neural Networks (CNNs) have demonstrated the state-of-the-art inference accuracy in various intelligent applications, each CNN inference involves millions of expensive floating point multiply-accumulate (MAC) operations. To energy-efficiently process CNN inferences, prior work proposes an electro-optical accelerator to process power-of-2 quantized CNNs by electro-optical ripple-carry adders and optical binary shifters. The electro-optical accelerator also uses SRAM registers to store intermediate data. However, electro-optical ripple-carry adders and SRAMs seriously limit the operating frequency and inference throughput of the electro-optical accelerator, due to the long critical path of the adder and the long access latency of SRAMs. In this paper, we propose a photonic nonvolatile memory (NVM)-based accelerator, Light-Bulb, to process binarized CNNs by high frequency photonic XNOR gates and popcount units. LightBulb also adopts photonic racetrack memory to serve as input/output registers to achieve high operating frequency. Compared to prior electro-optical accelerators, on average, LightBulb improves the CNN inference throughput by 17× ~ 173× and the inference throughput per Watt by 17.5 × ~ 660×.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
灯泡:基于光子-非易失性记忆的二值化卷积神经网络加速器
尽管卷积神经网络(CNN)已经在各种智能应用中展示了最先进的推理精度,但每次CNN推理都涉及数百万次昂贵的浮点乘法累加(MAC)运算。为了高效地处理CNN推断,先前的工作提出了一种光电加速器,通过光电纹波进位加法器和光学二进制移位器来处理2次方量子化的CNN。光电加速器也使用SRAM寄存器来存储中间数据。然而,由于加法器的关键路径长,而sram的访问延迟长,光电纹波携带加法器和sram严重限制了光电加速器的工作频率和推理吞吐量。在本文中,我们提出了一种基于光子非易失性存储器(NVM)的加速器Light-Bulb,通过高频光子XNOR门和popcount单元来处理二值化cnn。灯泡还采用光子赛道存储器作为输入/输出寄存器,实现高工作频率。与现有的电光加速器相比,LightBulb的CNN推理吞吐量平均提高了17× ~ 173×,每瓦推理吞吐量平均提高了17.5 × ~ 660×。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1