The Application of EKF in Parameter Identification of State-Space Model

Jing Zhang, Zuo Zhou, Xiao-Na Huang
{"title":"The Application of EKF in Parameter Identification of State-Space Model","authors":"Jing Zhang, Zuo Zhou, Xiao-Na Huang","doi":"10.1109/imccc.2018.00171","DOIUrl":null,"url":null,"abstract":"State-space model is an efficient tool for describing multiple input multiple output system, but the parameters identification of state-space model is a complicated problem, because in many cases, the parameters and state variables are all unknown in the model. Aiming at the shortcomings of the traditional identification method, in this paper, combined the unknown parameters and state variables of the state space model into a new state variable, then the linear state space model equation can be transformed into a nonlinear equation, and extended Kalman filtering(EKF) algorithm is used to estimate the new state variables. In this way, we can implement double estimates of the unknown parameters and state variables. Doing simulation and analysis with Matlab, the results show that the method can realize parameter identification and state estimation of state-space model effectively, which has higher precision and accuracy.","PeriodicalId":328754,"journal":{"name":"2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC)","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/imccc.2018.00171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

State-space model is an efficient tool for describing multiple input multiple output system, but the parameters identification of state-space model is a complicated problem, because in many cases, the parameters and state variables are all unknown in the model. Aiming at the shortcomings of the traditional identification method, in this paper, combined the unknown parameters and state variables of the state space model into a new state variable, then the linear state space model equation can be transformed into a nonlinear equation, and extended Kalman filtering(EKF) algorithm is used to estimate the new state variables. In this way, we can implement double estimates of the unknown parameters and state variables. Doing simulation and analysis with Matlab, the results show that the method can realize parameter identification and state estimation of state-space model effectively, which has higher precision and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EKF在状态空间模型参数辨识中的应用
状态空间模型是描述多输入多输出系统的有效工具,但状态空间模型的参数识别是一个复杂的问题,因为在很多情况下,模型中的参数和状态变量都是未知的。针对传统辨识方法的不足,本文将状态空间模型的未知参数和状态变量组合成一个新的状态变量,将线性状态空间模型方程转化为非线性方程,并采用扩展卡尔曼滤波(EKF)算法对新状态变量进行估计。通过这种方法,我们可以实现未知参数和状态变量的双重估计。通过Matlab仿真分析,结果表明该方法能有效地实现状态空间模型的参数辨识和状态估计,具有较高的精度和准确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey of Flying Ad-Hoc Networks: Characteristics and Challenges Survey of Matrix Completion Models A Weibo APP Design Based on Eclipse and Android Platforms A Study on the Optimization of Emergency Transfer of Casualties in Large-Scale Disasters Detecting Masqueraders by Profiling User Behaviors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1