Gait recognition using acceleration from MEMS

D. Gafurov, Kirsi Helkala, Torkjel Søndrol
{"title":"Gait recognition using acceleration from MEMS","authors":"D. Gafurov, Kirsi Helkala, Torkjel Søndrol","doi":"10.1109/ARES.2006.68","DOIUrl":null,"url":null,"abstract":"This paper presents an approach on recognising individuals based on 3D acceleration data from walking, which are collected using MEMS. Unlike most other gait recognition methods, which are based on video source, our approach uses walking acceleration in three directions: vertical, backward-forward and sideways. Using gait samples from 21 individuals and applying two methods, histogram similarity and cycle length, the equal error rates of 5% and 9% are achieved, respectively.","PeriodicalId":106780,"journal":{"name":"First International Conference on Availability, Reliability and Security (ARES'06)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Conference on Availability, Reliability and Security (ARES'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2006.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

Abstract

This paper presents an approach on recognising individuals based on 3D acceleration data from walking, which are collected using MEMS. Unlike most other gait recognition methods, which are based on video source, our approach uses walking acceleration in three directions: vertical, backward-forward and sideways. Using gait samples from 21 individuals and applying two methods, histogram similarity and cycle length, the equal error rates of 5% and 9% are achieved, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MEMS加速度的步态识别
本文提出了一种基于微机电系统采集的三维行走加速度数据的个体识别方法。与大多数其他基于视频源的步态识别方法不同,我们的方法在三个方向上使用行走加速度:垂直、前后和侧向。利用21个个体的步态样本,采用直方图相似度和周期长度两种方法,错误率分别为5%和9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inter-domains security management (IDSM) model for IP multimedia subsystem (IMS) Securing DNS services through system self cleansing and hardware enhancements No risk is unsafe: simulated results on dependability of complementary currencies Quality of password management policy Recovery mechanism of cooperative process chain in grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1