M. Swash, A. Aggoun, O. Fatah, J. C. Fernandez, E. Alazawi, Emmanuel Tsekleves
{"title":"Distributed pixel mapping for refining dark area in parallax barriers based holoscopic 3D Display","authors":"M. Swash, A. Aggoun, O. Fatah, J. C. Fernandez, E. Alazawi, Emmanuel Tsekleves","doi":"10.1109/IC3D.2013.6732101","DOIUrl":null,"url":null,"abstract":"Autostereoscopic 3D Display is robustly developed and available in the market for both home and professional users. However 3D resolution with acceptable 3D image quality remains a great challenge. This paper proposes a novel pixel mapping method for refining dark areas between two pinholes by distributing it into 3 times smaller dark areas and creating micro-pinholes in parallax barriers based holoscopic 3D displays. The proposed method allows to project RED, GREEN, BLUE subpixels separately from 3 different pinholes and it distributes the dark spaces into 3 times smaller dark spaces, which become unnoticeable and improves quality of the constructed holoscopic 3D scene significantly. Parallax barrier technology refers to a pinhole sheet or device placed in front or back of a liquid crystal display, allowing to project viewpoint pixels into space that reconstructs a holoscopic 3D scene in space. The holoscopic technology mimics the imaging system of insects, such as the fly, utilizing a single camera, equipped with a large number of micro-lenses or pinholes, to capture a scene, offering rich parallax information and enhanced 3D feeling without the need of wearing specific eyewear.","PeriodicalId":252498,"journal":{"name":"2013 International Conference on 3D Imaging","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on 3D Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3D.2013.6732101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Autostereoscopic 3D Display is robustly developed and available in the market for both home and professional users. However 3D resolution with acceptable 3D image quality remains a great challenge. This paper proposes a novel pixel mapping method for refining dark areas between two pinholes by distributing it into 3 times smaller dark areas and creating micro-pinholes in parallax barriers based holoscopic 3D displays. The proposed method allows to project RED, GREEN, BLUE subpixels separately from 3 different pinholes and it distributes the dark spaces into 3 times smaller dark spaces, which become unnoticeable and improves quality of the constructed holoscopic 3D scene significantly. Parallax barrier technology refers to a pinhole sheet or device placed in front or back of a liquid crystal display, allowing to project viewpoint pixels into space that reconstructs a holoscopic 3D scene in space. The holoscopic technology mimics the imaging system of insects, such as the fly, utilizing a single camera, equipped with a large number of micro-lenses or pinholes, to capture a scene, offering rich parallax information and enhanced 3D feeling without the need of wearing specific eyewear.