Convolutional Neural Networks for Omnidirectional Image Quality Assessment: Pre-Trained or Re-Trained?

Abderrezzaq Sendjasni, M. Larabi, F. A. Cheikh
{"title":"Convolutional Neural Networks for Omnidirectional Image Quality Assessment: Pre-Trained or Re-Trained?","authors":"Abderrezzaq Sendjasni, M. Larabi, F. A. Cheikh","doi":"10.1109/ICIP42928.2021.9506192","DOIUrl":null,"url":null,"abstract":"The use of convolutional neural networks (CNN) for image quality assessment (IQA) becomes many researcher’s focus. Various pre-trained models are fine-tuned and used for this task. In this paper, we conduct a benchmark study of seven state-of-the-art pre-trained models for IQA of omnidirectional images. To this end, we first train these models using an omnidirectional database and compare their performance with the pre-trained versions. Then, we compare the use of viewports versus equirectangular (ERP) images as inputs to the models. Finally, for the viewports-based models, we explore the impact of the input number of viewports on the models’ performance. Experimental results demonstrated the performance gain of the re-trained CNNs compared to their pre-trained versions. Also, the viewports-based approach outperformed the ERP-based one independently of the number of selected views.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of convolutional neural networks (CNN) for image quality assessment (IQA) becomes many researcher’s focus. Various pre-trained models are fine-tuned and used for this task. In this paper, we conduct a benchmark study of seven state-of-the-art pre-trained models for IQA of omnidirectional images. To this end, we first train these models using an omnidirectional database and compare their performance with the pre-trained versions. Then, we compare the use of viewports versus equirectangular (ERP) images as inputs to the models. Finally, for the viewports-based models, we explore the impact of the input number of viewports on the models’ performance. Experimental results demonstrated the performance gain of the re-trained CNNs compared to their pre-trained versions. Also, the viewports-based approach outperformed the ERP-based one independently of the number of selected views.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于全方位图像质量评估的卷积神经网络:预训练还是再训练?
卷积神经网络(CNN)在图像质量评估(IQA)中的应用成为众多研究者关注的焦点。各种预训练模型被微调并用于此任务。在本文中,我们对七个最先进的全向图像IQA预训练模型进行了基准研究。为此,我们首先使用全向数据库训练这些模型,并将其性能与预训练版本进行比较。然后,我们比较视口与等矩形(ERP)图像作为模型输入的使用。最后,对于基于视口的模型,我们探讨了视口输入数量对模型性能的影响。实验结果表明,与预先训练的cnn相比,重新训练的cnn的性能有所提高。此外,基于viewport的方法优于基于erp的方法,与所选视图的数量无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1