{"title":"Teaching University-Level Technology Students Via the Learning Preferences and Problem-Solving Approach","authors":"S. Scott, Doug Koch","doi":"10.21061/jots.v36i1.a.3","DOIUrl":null,"url":null,"abstract":"This article focuses on how technology educators can challenge students to “think” about technical problems. A key aspect of success in quality problem solving is understanding learning preferences and problem-solving approaches. The Learning Style Inventory (LSI) can be used to assess an individual’s ideal way to learn, in essence, a person’s learning preference (Kolb, 1984). It also can be beneficial to understand how students approach problems. The Kirton Adaption-Innovation Inventory (KAI) can be used to measure an individual’s problem-solving approach (Kirton, 1999). The purpose of this study was to determine the most effective way to teach university-level technology students to solve problems, according to their learning preferences and problem-solving approaches. The results of the study indicated that a majority of the technology students had a combination of learning preferences. The next highest percent and frequency of the students’ learning preferences was accommodating. In addition, the students in this study were both adaptive and innovative in their problem-solving approaches. One way to effectively teach problem solving to university-level technology students is to form teams of students whose members have differing learning preferences and approaches. Moreover, educators can provide learning activities that address the phases of the learning cycle and the ways in which students like to approach problems. Introduction The ever-changing technical work environment requires students to think fast and solve complex global problems. It is estimated that the root of problems in many organizations is a result of ineffective thinking (Wiele, 1998). Employers depend on technology educators to develop quality thinkers. Technology educators aim to give students a “high tech” education. This “high tech” education often means skills in computer-aided drafting, robotics, telecommunications, and quality assurance tools. However, are educators challenging students to “think” about technical problems? Starkweather (1997) argued that educators teach students to use equipment, but they often fail to teach technical problem solving, which is a higher order thinking skill. Williams (2001) agreed, acknowledging that teachers should focus on how to think rather than what to think. Each individual has a preference to his or her thinking. The Learning Style Inventory (LSI) can be used to assess an individual’s ideal way to learn, in essence, his or her learning preference (Kolb, 1984). Another measure of thinking is the way in which students approach problems. The Kirton AdaptionInnovation Inventory (KAI) can be used to assess a person’s approach to solving problems (Kirton, 2000). Understanding learning preferences and problemsolving approaches can help students to become quality thinkers and problem solvers. Currently, there is little research on learning preferences and problem-solving approaches among university-level technology students. Purpose of the Study The purpose of this study was to determine the most effective way to teach university-level technology students problem solving according to their learning preferences and problem-solving approaches. In order for students to make the most of their education, understanding their learning preference and approach to problem solving is essential. The research questions for this study are as follows: 1. What is the learning preference of technology students enrolled in an Industrial Engineering Department at a Midwestern university? 2. What is the problem-solving approach of technology students enrolled in an Industrial Engineering Department at a Midwestern university? 3. What is the most effective way to teach university-level technology students problem solving based on their preferences and approaches? The data gathered in this study can help students and educators understand problem solving and the way in which they prefer to learn and approach problems. The results of this study may influence the way in which educators T h e J o u rn a l o f Te c h n o lo g y S tu d ie s Teaching University-Level Technology Students via the Learning Preferences and Problem-Solving Approach. Sophia Scott and Doug Koch 16","PeriodicalId":142452,"journal":{"name":"The Journal of Technology Studies","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Technology Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21061/jots.v36i1.a.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This article focuses on how technology educators can challenge students to “think” about technical problems. A key aspect of success in quality problem solving is understanding learning preferences and problem-solving approaches. The Learning Style Inventory (LSI) can be used to assess an individual’s ideal way to learn, in essence, a person’s learning preference (Kolb, 1984). It also can be beneficial to understand how students approach problems. The Kirton Adaption-Innovation Inventory (KAI) can be used to measure an individual’s problem-solving approach (Kirton, 1999). The purpose of this study was to determine the most effective way to teach university-level technology students to solve problems, according to their learning preferences and problem-solving approaches. The results of the study indicated that a majority of the technology students had a combination of learning preferences. The next highest percent and frequency of the students’ learning preferences was accommodating. In addition, the students in this study were both adaptive and innovative in their problem-solving approaches. One way to effectively teach problem solving to university-level technology students is to form teams of students whose members have differing learning preferences and approaches. Moreover, educators can provide learning activities that address the phases of the learning cycle and the ways in which students like to approach problems. Introduction The ever-changing technical work environment requires students to think fast and solve complex global problems. It is estimated that the root of problems in many organizations is a result of ineffective thinking (Wiele, 1998). Employers depend on technology educators to develop quality thinkers. Technology educators aim to give students a “high tech” education. This “high tech” education often means skills in computer-aided drafting, robotics, telecommunications, and quality assurance tools. However, are educators challenging students to “think” about technical problems? Starkweather (1997) argued that educators teach students to use equipment, but they often fail to teach technical problem solving, which is a higher order thinking skill. Williams (2001) agreed, acknowledging that teachers should focus on how to think rather than what to think. Each individual has a preference to his or her thinking. The Learning Style Inventory (LSI) can be used to assess an individual’s ideal way to learn, in essence, his or her learning preference (Kolb, 1984). Another measure of thinking is the way in which students approach problems. The Kirton AdaptionInnovation Inventory (KAI) can be used to assess a person’s approach to solving problems (Kirton, 2000). Understanding learning preferences and problemsolving approaches can help students to become quality thinkers and problem solvers. Currently, there is little research on learning preferences and problem-solving approaches among university-level technology students. Purpose of the Study The purpose of this study was to determine the most effective way to teach university-level technology students problem solving according to their learning preferences and problem-solving approaches. In order for students to make the most of their education, understanding their learning preference and approach to problem solving is essential. The research questions for this study are as follows: 1. What is the learning preference of technology students enrolled in an Industrial Engineering Department at a Midwestern university? 2. What is the problem-solving approach of technology students enrolled in an Industrial Engineering Department at a Midwestern university? 3. What is the most effective way to teach university-level technology students problem solving based on their preferences and approaches? The data gathered in this study can help students and educators understand problem solving and the way in which they prefer to learn and approach problems. The results of this study may influence the way in which educators T h e J o u rn a l o f Te c h n o lo g y S tu d ie s Teaching University-Level Technology Students via the Learning Preferences and Problem-Solving Approach. Sophia Scott and Doug Koch 16