A. A. Masud, Sabbir Hossain, Muhsina Rifa, Farhana Akter, Akib Zaman, D. Farid
{"title":"Meta-Learning in Supervised Machine Learning","authors":"A. A. Masud, Sabbir Hossain, Muhsina Rifa, Farhana Akter, Akib Zaman, D. Farid","doi":"10.1109/SKIMA57145.2022.10029537","DOIUrl":null,"url":null,"abstract":"In the present digital era, a popular use of Machine learning is knowledge mining from big data. Machine learning is the sub-branch of Artificial Intelligence (AI) that extracts rules automatically from Big Data for decision-making to build expert systems. Meta-Learning is a sub-branch of machine learning, which uses machine learning classifiers that learns to map and combine predictions and information of data of other ML-models in the field of ensemble-learning. Meta-learning helps us to select the best/right learning algorithms to solve a particular problem. It maps from the meta-data of other machine learning algorithms by evaluating it on different datasets. In this paper, we have presented very recent state-of-the-art research works on meta-learning. We have categorized meta-learning on supervised learning data sets into three categories: (1) Task Independent Recommendation, (2) Configuration Space Design, and (3) Configuration Transfer, and reviewed the recent works on each category.","PeriodicalId":277436,"journal":{"name":"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA57145.2022.10029537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the present digital era, a popular use of Machine learning is knowledge mining from big data. Machine learning is the sub-branch of Artificial Intelligence (AI) that extracts rules automatically from Big Data for decision-making to build expert systems. Meta-Learning is a sub-branch of machine learning, which uses machine learning classifiers that learns to map and combine predictions and information of data of other ML-models in the field of ensemble-learning. Meta-learning helps us to select the best/right learning algorithms to solve a particular problem. It maps from the meta-data of other machine learning algorithms by evaluating it on different datasets. In this paper, we have presented very recent state-of-the-art research works on meta-learning. We have categorized meta-learning on supervised learning data sets into three categories: (1) Task Independent Recommendation, (2) Configuration Space Design, and (3) Configuration Transfer, and reviewed the recent works on each category.