The AllScale API

P. Gschwandtner, Herbert Jordan, Peter Thoman, T. Fahringer
{"title":"The AllScale API","authors":"P. Gschwandtner, Herbert Jordan, Peter Thoman, T. Fahringer","doi":"10.1109/eScience.2019.00064","DOIUrl":null,"url":null,"abstract":"Effectively implementing scientific algorithms in distributed memory parallel applications is a difficult task for domain scientists, as evident by the large number of domain-specific languages and libraries available today attempting to facilitate the process. However, they usually provide a closed set of parallel patterns and are not open for extension without vast modifications to the underlying system. In this work, we present the AllScale API, a programming interface for developing distributed memory parallel applications with the ease of shared memory programming models. The AllScale API is closed for modification but open for extension, allowing new, user-defined parallel patterns and data structures to be implemented based on existing core primitives and therefore fully supported in the AllScale framework. Focusing on high-level functionality directly offered to application developers, we present the design advantages of such an API design, detail some of its specifications and evaluate it using three real-world use cases. Our results show that AllScale decreases the complexity of implementing scientific applications for distributed memory while attaining comparable or higher performance compared to MPI reference implementations.","PeriodicalId":142614,"journal":{"name":"2019 15th International Conference on eScience (eScience)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on eScience (eScience)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2019.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Effectively implementing scientific algorithms in distributed memory parallel applications is a difficult task for domain scientists, as evident by the large number of domain-specific languages and libraries available today attempting to facilitate the process. However, they usually provide a closed set of parallel patterns and are not open for extension without vast modifications to the underlying system. In this work, we present the AllScale API, a programming interface for developing distributed memory parallel applications with the ease of shared memory programming models. The AllScale API is closed for modification but open for extension, allowing new, user-defined parallel patterns and data structures to be implemented based on existing core primitives and therefore fully supported in the AllScale framework. Focusing on high-level functionality directly offered to application developers, we present the design advantages of such an API design, detail some of its specifications and evaluate it using three real-world use cases. Our results show that AllScale decreases the complexity of implementing scientific applications for distributed memory while attaining comparable or higher performance compared to MPI reference implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对于领域科学家来说,在分布式内存并行应用程序中有效地实现科学算法是一项艰巨的任务,目前有大量的领域特定语言和库试图促进这一过程。然而,它们通常提供一组封闭的并行模式,如果不对底层系统进行大量修改,就不能对扩展开放。在这项工作中,我们提出了AllScale API,这是一个编程接口,用于开发具有共享内存编程模型的分布式内存并行应用程序。AllScale API对修改是封闭的,但对扩展是开放的,允许新的、用户定义的并行模式和数据结构基于现有的核心原语实现,因此在AllScale框架中完全支持。重点关注直接提供给应用程序开发人员的高级功能,我们展示了这种API设计的设计优势,详细介绍了它的一些规范,并使用三个实际用例对其进行了评估。我们的结果表明,与MPI参考实现相比,AllScale降低了为分布式内存实现科学应用程序的复杂性,同时获得了相当或更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Scientific Discovery with SCAIGATE Science Gateway Contextual Linking between Workflow Provenance and System Performance Logs BBBlockchain: Blockchain-Based Participation in Urban Development Streaming Workflows on Edge Devices to Process Sensor Data on a Smart Manufacturing Platform Serverless Science for Simple, Scalable, and Shareable Scholarship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1