Geometric feature based facial expression recognition using multiclass support vector machines

Gang Lei, Xiaohua Li, Jiliu Zhou, Xiao-gang Gong
{"title":"Geometric feature based facial expression recognition using multiclass support vector machines","authors":"Gang Lei, Xiaohua Li, Jiliu Zhou, Xiao-gang Gong","doi":"10.1109/GRC.2009.5255106","DOIUrl":null,"url":null,"abstract":"In this paper, a novel Geometric features extraction method for facial expression recognition is proposed. ASM automatic fiducial point location algorithm is firstly applied to a facial expression image, and then calculating the Euclidean distances between the center of gravity coordinate and the annotated fiducial points' coordinates of the face image. In order to extract the discriminate deformable geometric information, the system extracts the geometric deformation difference features between a person's neural expression and the other seven basic expressions. A multiclass Support Vector Machine (SVM) classifier is used to recognize the facial expressions. Experiments indicate that our proposed method can obtain good classification accuracy.","PeriodicalId":388774,"journal":{"name":"2009 IEEE International Conference on Granular Computing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2009.5255106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

In this paper, a novel Geometric features extraction method for facial expression recognition is proposed. ASM automatic fiducial point location algorithm is firstly applied to a facial expression image, and then calculating the Euclidean distances between the center of gravity coordinate and the annotated fiducial points' coordinates of the face image. In order to extract the discriminate deformable geometric information, the system extracts the geometric deformation difference features between a person's neural expression and the other seven basic expressions. A multiclass Support Vector Machine (SVM) classifier is used to recognize the facial expressions. Experiments indicate that our proposed method can obtain good classification accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于几何特征的多类支持向量机面部表情识别
提出了一种新的面部表情识别几何特征提取方法。首先将ASM自动基准点定位算法应用于人脸表情图像,然后计算人脸图像重心坐标与标注基准点坐标之间的欧氏距离。为了提取可区分变形的几何信息,系统提取人的神经表情与其他七种基本表情的几何变形差异特征。采用多类支持向量机(SVM)分类器对面部表情进行识别。实验表明,该方法能获得较好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On SP-closedness in L-topological spaces A comprehensive evaluation method based on extenics and rough set A two-step approach for solving the flexible job shop scheduling problem A fast and accurate collaborative filter Attribute Grid Computer based on Qualitative Mapping and its application in pattern Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1