Learning Progress Modeling for Monitoring Student

R. Arafiyah, Z. Hasibuan, Harry Budi Santoso
{"title":"Learning Progress Modeling for Monitoring Student","authors":"R. Arafiyah, Z. Hasibuan, Harry Budi Santoso","doi":"10.1109/ICIC50835.2020.9288613","DOIUrl":null,"url":null,"abstract":"Monitoring the progress of students is part of the teacher's job which is very important and very time-consuming. Especially if there are many students with various subjects. This is the experience of most primary school teachers in Indonesia. One way to solve this problem is to predict student progress. In this study, the students' progress was predicted using Random Forest. The Random Forest algorithm is used because it can classify data that has incomplete attributes, which are usually found in student assessment data. The prediction model was built based on assessment data from 2 classes with 46 elementary school students in subjects: Indonesian, mathematics, SBdP (Cultural Arts and Crafts), PPKN (Pancasila and Citizenship Education), and Computers. The dataset comes from the formative and summative assessment results from 3 aspects (cognitive, psychomotor, and affective). The resulting model performance will be measured using accuracy and recall. The results showed that using a dataset of 5 subjects from 46 students, the Random Forest algorithm produced a learning progress model with 100% accuracy for training data and 94% for testing data. Meanwhile, the learning progress prediction model for each subject has 100% accuracy on training data and more than 96% on test data.","PeriodicalId":413610,"journal":{"name":"2020 Fifth International Conference on Informatics and Computing (ICIC)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fifth International Conference on Informatics and Computing (ICIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC50835.2020.9288613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring the progress of students is part of the teacher's job which is very important and very time-consuming. Especially if there are many students with various subjects. This is the experience of most primary school teachers in Indonesia. One way to solve this problem is to predict student progress. In this study, the students' progress was predicted using Random Forest. The Random Forest algorithm is used because it can classify data that has incomplete attributes, which are usually found in student assessment data. The prediction model was built based on assessment data from 2 classes with 46 elementary school students in subjects: Indonesian, mathematics, SBdP (Cultural Arts and Crafts), PPKN (Pancasila and Citizenship Education), and Computers. The dataset comes from the formative and summative assessment results from 3 aspects (cognitive, psychomotor, and affective). The resulting model performance will be measured using accuracy and recall. The results showed that using a dataset of 5 subjects from 46 students, the Random Forest algorithm produced a learning progress model with 100% accuracy for training data and 94% for testing data. Meanwhile, the learning progress prediction model for each subject has 100% accuracy on training data and more than 96% on test data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
监测学生学习进度的建模方法
监督学生的进步是教师工作的一部分,这是非常重要和非常耗时的。特别是如果有很多不同学科的学生。这是印尼大多数小学教师的经历。解决这个问题的一个方法是预测学生的进步。在本研究中,使用随机森林预测学生的进步。使用随机森林算法是因为它可以对具有不完整属性的数据进行分类,而这些数据通常存在于学生评估数据中。预测模型基于两个班共46名小学生的评估数据:印尼语、数学、SBdP(文化艺术与手工艺)、PPKN(潘卡西拉与公民教育)和计算机。数据集来自认知、精神运动和情感三个方面的形成性和总结性评估结果。由此产生的模型性能将使用准确性和召回率来衡量。结果表明,使用来自46名学生的5个科目的数据集,随机森林算法产生的学习进度模型对训练数据的准确率为100%,对测试数据的准确率为94%。同时,各学科的学习进度预测模型在训练数据上准确率达到100%,在测试数据上准确率达到96%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Task Design for Indonesian Cultural Heritage Data Collection with Crowdsourcing PenalViz: A Web-Based Visualization Tool for the Indonesian Penal Code Examining GOJEK Drivers' Loyalty: The Influence of GOJEK's Partnership Mechanism and Service Quality Modeling and Analysis of Three-Phase Active Power Filter Integrated Photovoltaic as a Reactive Power Compensator Using the Simulink Matlab Tool An Evaluation of Internet Addiction Test (IAT)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1