{"title":"Estimating Plant Centers Using A Deep Binary Classifier","authors":"Yuhao Chen, Javier Ribera, E. Delp","doi":"10.1109/SSIAI.2018.8470367","DOIUrl":null,"url":null,"abstract":"Phenotyping is the process of estimating the physical and chemical properties of a plant. Traditional phenotyping is labor intensive and time consuming. These measurements can be obtained faster by collecting aerial images with an Unmanned Aerial Vehicle (UAV) and analyzing them using modern image analysis technologies. We propose a method to estimate plant centers by classifying each pixel as a plant center or not a plant center. We then label the center of each cluster as the plant location. We studied the performance of our method on two datasets. We achieved 84% precision and 90% recall on one dataset consisting of early stage plants and 62% precision and 77% recall on another dataset consisting of later stage plants.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Phenotyping is the process of estimating the physical and chemical properties of a plant. Traditional phenotyping is labor intensive and time consuming. These measurements can be obtained faster by collecting aerial images with an Unmanned Aerial Vehicle (UAV) and analyzing them using modern image analysis technologies. We propose a method to estimate plant centers by classifying each pixel as a plant center or not a plant center. We then label the center of each cluster as the plant location. We studied the performance of our method on two datasets. We achieved 84% precision and 90% recall on one dataset consisting of early stage plants and 62% precision and 77% recall on another dataset consisting of later stage plants.