Collecting and Presenting Reproducible Intranode Stencil Performance: INSPECT

Julian Hornich, Julian Hammer, G. Hager, T. Gruber, G. Wellein
{"title":"Collecting and Presenting Reproducible Intranode Stencil Performance: INSPECT","authors":"Julian Hornich, Julian Hammer, G. Hager, T. Gruber, G. Wellein","doi":"10.14529/JSFI190301","DOIUrl":null,"url":null,"abstract":"Stencil algorithms have been receiving considerable interest in HPC research for decades. The techniques used to approach multi-core stencil performance modeling and engineering span basic runtime measurements, elaborate performance models, detailed hardware counter analysis, and thorough scaling behavior evaluation. Due to the plurality of approaches and stencil patterns, we set out to develop a generalizable methodology for reproducible measurements accompanied by state-of-the-art performance models. Our open-source toolchain, and collected results are publicly available in the \"Intranode Stencil Performance Evaluation Collection\" (INSPECT). We present the underlying methodologies, models and tools involved in gathering and documenting the performance behavior of a collection of typical stencil patterns across multiple architectures and hardware configuration options. Our aim is to endow performance-aware application developers with reproducible baseline performance data and validated models to initiate a well-defined process of performance assessment and optimization.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/JSFI190301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Stencil algorithms have been receiving considerable interest in HPC research for decades. The techniques used to approach multi-core stencil performance modeling and engineering span basic runtime measurements, elaborate performance models, detailed hardware counter analysis, and thorough scaling behavior evaluation. Due to the plurality of approaches and stencil patterns, we set out to develop a generalizable methodology for reproducible measurements accompanied by state-of-the-art performance models. Our open-source toolchain, and collected results are publicly available in the "Intranode Stencil Performance Evaluation Collection" (INSPECT). We present the underlying methodologies, models and tools involved in gathering and documenting the performance behavior of a collection of typical stencil patterns across multiple architectures and hardware configuration options. Our aim is to endow performance-aware application developers with reproducible baseline performance data and validated models to initiate a well-defined process of performance assessment and optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
收集和呈现可复制的内部网模板性能:检查
几十年来,模板算法一直受到高性能计算研究的极大关注。用于处理多核模板性能建模和工程的技术包括基本的运行时测量、详细的性能模型、详细的硬件计数器分析和全面的缩放行为评估。由于有多种方法和模板模式,我们着手开发一种通用的方法,用于伴随最先进性能模型的可重复测量。我们的开源工具链和收集的结果在“内部网模板性能评估集合”(INSPECT)中公开可用。我们介绍了收集和记录跨多个体系结构和硬件配置选项的典型模板模式集合的性能行为所涉及的基本方法、模型和工具。我们的目标是为性能敏感的应用程序开发人员提供可重复的基准性能数据和经过验证的模型,以启动一个定义良好的性能评估和优化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface Air Quality River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and Parallel Implementation on Hybrid Supercomputers Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas: Challenges and Initial Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1