Yongyang Xu, Yaxing Feng, Zhong Xie, A. Hu, Xueman Zhang
{"title":"A Research on Extracting Road Network from High Resolution Remote Sensing Imagery","authors":"Yongyang Xu, Yaxing Feng, Zhong Xie, A. Hu, Xueman Zhang","doi":"10.1109/GEOINFORMATICS.2018.8557042","DOIUrl":null,"url":null,"abstract":"The road network plays an important role for traffic management, GPS navigation and many other applications. Extracting the road from a high remote sensing (RS) imagery has been a hot research topic in recent years. The road structure always changing as the terrain, thus, how to extract the features of road network and identify the roads from RS imagery efficiently still a challenging. In this paper, we propose a road extraction method for RS imagery using the deep convolutional neural network, which is designed based on the deep residual networks and take full advantages of the U-net. Road network data form Las Vegas, America, are used to validate the method, and experiments show that the proposed model of deep convolutional neural network can extract road network accurately and effectively.","PeriodicalId":142380,"journal":{"name":"2018 26th International Conference on Geoinformatics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEOINFORMATICS.2018.8557042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The road network plays an important role for traffic management, GPS navigation and many other applications. Extracting the road from a high remote sensing (RS) imagery has been a hot research topic in recent years. The road structure always changing as the terrain, thus, how to extract the features of road network and identify the roads from RS imagery efficiently still a challenging. In this paper, we propose a road extraction method for RS imagery using the deep convolutional neural network, which is designed based on the deep residual networks and take full advantages of the U-net. Road network data form Las Vegas, America, are used to validate the method, and experiments show that the proposed model of deep convolutional neural network can extract road network accurately and effectively.