An Implementation of Traffic Signs and Road Objects Detection Using Faster R-CNN

E. Güney, C. Bayilmis
{"title":"An Implementation of Traffic Signs and Road Objects Detection Using Faster R-CNN","authors":"E. Güney, C. Bayilmis","doi":"10.35377/saucis...1073355","DOIUrl":null,"url":null,"abstract":"Traffic signs and road objects detection is significant issue for driver safety. It has become popular with the development of autonomous vehicles and driver-assistant systems. This study presents a real-time system that detects traffic signs and various objects in the driving environment with a camera. Faster R-CNN architecture was used as a detection method in this study. This architecture is a well-known two-stage approach for object detection. Dataset was created by collecting various images for training and testing of the model. The dataset consists of 1880 images containing traffic signs and objects collected from Turkey with the GTSRB dataset. These images were combined and divided into the training set and testing set with the ratio of 80/20. The model's training was carried out in the computer environment for 8.5 hours and approximately 10000 iterations. Experimental results show the real-time performance of Faster R-CNN for robustly traffic signs and objects detection.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis...1073355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Traffic signs and road objects detection is significant issue for driver safety. It has become popular with the development of autonomous vehicles and driver-assistant systems. This study presents a real-time system that detects traffic signs and various objects in the driving environment with a camera. Faster R-CNN architecture was used as a detection method in this study. This architecture is a well-known two-stage approach for object detection. Dataset was created by collecting various images for training and testing of the model. The dataset consists of 1880 images containing traffic signs and objects collected from Turkey with the GTSRB dataset. These images were combined and divided into the training set and testing set with the ratio of 80/20. The model's training was carried out in the computer environment for 8.5 hours and approximately 10000 iterations. Experimental results show the real-time performance of Faster R-CNN for robustly traffic signs and objects detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于更快R-CNN的交通标志和道路物体检测实现
交通标志和道路物体检测是影响驾驶员安全的重要问题。随着自动驾驶汽车和驾驶员辅助系统的发展,它变得流行起来。本研究提出了一种实时系统,可以通过摄像头检测交通标志和驾驶环境中的各种物体。本研究采用更快的R-CNN架构作为检测方法。这种架构是一种众所周知的两阶段对象检测方法。通过收集各种图像来创建数据集,用于模型的训练和测试。该数据集由1880幅图像组成,其中包含了使用GTSRB数据集从土耳其收集的交通标志和物体。将这些图像进行组合,并按80/20的比例划分为训练集和测试集。该模型的训练在计算机环境下进行了8.5小时,大约10000次迭代。实验结果表明,Faster R-CNN具有鲁棒性交通标志和目标检测的实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Cardiovascular Disease Based on Voting Ensemble Model and SHAP Analysis A NOVEL ADDITIVE INTERNET OF THINGS (IoT) FEATURES AND CONVOLUTIONAL NEURAL NETWORK FOR CLASSIFICATION AND SOURCE IDENTIFICATION OF IoT DEVICES High-Capacity Multiplier Design Using Look Up Table Sequential and Correlated Image Hash Code Generation with Deep Reinforcement Learning Price Prediction Using Web Scraping and Machine Learning Algorithms in the Used Car Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1