A new efficient SVM and its application to real-time accurate eye localization

Shuo Chen, Chengjun Liu
{"title":"A new efficient SVM and its application to real-time accurate eye localization","authors":"Shuo Chen, Chengjun Liu","doi":"10.1109/IJCNN.2011.6033547","DOIUrl":null,"url":null,"abstract":"For complicated classification problems, the standard Support Vector Machine (SVM) is likely to be complex and thus the classification efficiency is low. In this paper, we propose a new efficient SVM (eSVM), which is based on the idea of minimizing the margin of misclassified samples. Compared with the conventional SVM, the eSVM is defined on fewer support vectors and thus can achieve much faster classification speed and comparable or even higher classification accuracy. We then present a real-time accurate eye localization system using the eSVM together with color information and 2D Haar wavelet features. Experiments on some public data sets show that (i) the eSVM significantly improves the efficiency of the standard SVM without sacrificing its accuracy and (ii) the eye localization system has real-time speed and higher detection accuracy than some state-of-the-art approaches.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

For complicated classification problems, the standard Support Vector Machine (SVM) is likely to be complex and thus the classification efficiency is low. In this paper, we propose a new efficient SVM (eSVM), which is based on the idea of minimizing the margin of misclassified samples. Compared with the conventional SVM, the eSVM is defined on fewer support vectors and thus can achieve much faster classification speed and comparable or even higher classification accuracy. We then present a real-time accurate eye localization system using the eSVM together with color information and 2D Haar wavelet features. Experiments on some public data sets show that (i) the eSVM significantly improves the efficiency of the standard SVM without sacrificing its accuracy and (ii) the eye localization system has real-time speed and higher detection accuracy than some state-of-the-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的高效支持向量机及其在眼睛实时精确定位中的应用
对于复杂的分类问题,标准的支持向量机(SVM)可能比较复杂,分类效率较低。在本文中,我们提出了一种新的高效支持向量机(eSVM),该支持向量机基于最小化误分类样本裕度的思想。与传统支持向量机相比,eSVM的支持向量更少,因此可以实现更快的分类速度和相当甚至更高的分类精度。然后,我们利用eSVM结合颜色信息和二维Haar小波特征提出了一个实时准确的眼睛定位系统。在一些公开数据集上的实验表明:(i) eSVM在不牺牲其精度的情况下显著提高了标准SVM的效率;(ii)眼睛定位系统比一些最先进的方法具有实时性和更高的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1