Recognition of Nanocomposites Agglomeration in Scanning Electron Microscopy Image with Semantic Segmentation Algorithm

Yu Bai, D. Qiang, Yanru Zhang, Xinyu Wang, Xu Zhuang, George Chen, Yan Wang
{"title":"Recognition of Nanocomposites Agglomeration in Scanning Electron Microscopy Image with Semantic Segmentation Algorithm","authors":"Yu Bai, D. Qiang, Yanru Zhang, Xinyu Wang, Xu Zhuang, George Chen, Yan Wang","doi":"10.1109/CEIDP49254.2020.9437466","DOIUrl":null,"url":null,"abstract":"Agglomeration is a major challenge in the research of nanodielectrics. Recognition of agglomerates in scanning electron microscopy (SEM) images can effectively support tackle this issue. Motivated by the fast development of image recognition, we propose a new approach for agglomerates recognition in SEM images of nanodielectrics by semantic segmentation algorithm. On the basis of convolutional neural network, pixel blocks classification network and full convolutional segmentation network employed with data augmentation are investigated in this work. Both networks can preliminarily recognize the agglomerates of spherical silica-based blend polyethylene nanocomposites. The average intersection over union (mIoU) of the pixel blocks classification network is 0.837 and it takes 48 seconds to process an image, while the mIoU of the full convolutional segmentation network is 0.777 and it takes 0.059 seconds to process an image.","PeriodicalId":170813,"journal":{"name":"2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP49254.2020.9437466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Agglomeration is a major challenge in the research of nanodielectrics. Recognition of agglomerates in scanning electron microscopy (SEM) images can effectively support tackle this issue. Motivated by the fast development of image recognition, we propose a new approach for agglomerates recognition in SEM images of nanodielectrics by semantic segmentation algorithm. On the basis of convolutional neural network, pixel blocks classification network and full convolutional segmentation network employed with data augmentation are investigated in this work. Both networks can preliminarily recognize the agglomerates of spherical silica-based blend polyethylene nanocomposites. The average intersection over union (mIoU) of the pixel blocks classification network is 0.837 and it takes 48 seconds to process an image, while the mIoU of the full convolutional segmentation network is 0.777 and it takes 0.059 seconds to process an image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义分割算法的扫描电镜图像中纳米复合材料结块识别
团聚是纳米电介质研究中的一个重大挑战。扫描电镜(SEM)图像中团块的识别可以有效地解决这一问题。在图像识别技术快速发展的背景下,提出了一种基于语义分割算法的纳米电介质扫描电镜图像团块识别新方法。在卷积神经网络的基础上,研究了采用数据增强的像素块分类网络和全卷积分割网络。两种网络都能初步识别球形硅基共混聚乙烯纳米复合材料的团聚体。像素块分类网络的平均mIoU为0.837,处理一幅图像耗时48秒,而全卷积分割网络的mIoU为0.777,处理一幅图像耗时0.059秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristic Gas Production Law of Dodecylbenzene Insulating Oil under Thermal Fault Influence of Saltwater and Water Blocking Compounds on XLPE DC Conductivity An accelerometer based on thermoformed piezoelectrets with open-tubular channels Development of Nonlinear Field Grading Material for Controlling Electric Field in DC Connectors Electrical tree growth under harmonic frequencies characterized by partial discharges waveforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1