A Practical Approach Based on Machine Learning to Support Signal Integrity Design

Werner John, Julian Withöft, Emre Ecik, R. Brüning, J. Götze
{"title":"A Practical Approach Based on Machine Learning to Support Signal Integrity Design","authors":"Werner John, Julian Withöft, Emre Ecik, R. Brüning, J. Götze","doi":"10.1109/EMCEurope51680.2022.9901213","DOIUrl":null,"url":null,"abstract":"A PCB design system enhanced with AI/ML modules can support the optimal use of microelectronic components in the development process. To do this, the PCB and circuit designer must be provided with AI-based suggestions for SI-compliant interconnection of components in the early design phase. AI-based modules can also serve as a reference for engineers working in the selection of interconnect structures in the pre-, concurrent-, and post-layout analysis phases but having little or no experience with signal integrity (SI). This paper shows from a practical point of view how to create ML modules for SI analysis. Selected ML modules (k-Nearest Neighbor (kNN) + Neural Network (NN - Keras) + Support Vector Regression (SVR)) for predicting design relevant SI parameters for PCB subnetworks are presented.","PeriodicalId":268262,"journal":{"name":"2022 International Symposium on Electromagnetic Compatibility – EMC Europe","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Electromagnetic Compatibility – EMC Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCEurope51680.2022.9901213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A PCB design system enhanced with AI/ML modules can support the optimal use of microelectronic components in the development process. To do this, the PCB and circuit designer must be provided with AI-based suggestions for SI-compliant interconnection of components in the early design phase. AI-based modules can also serve as a reference for engineers working in the selection of interconnect structures in the pre-, concurrent-, and post-layout analysis phases but having little or no experience with signal integrity (SI). This paper shows from a practical point of view how to create ML modules for SI analysis. Selected ML modules (k-Nearest Neighbor (kNN) + Neural Network (NN - Keras) + Support Vector Regression (SVR)) for predicting design relevant SI parameters for PCB subnetworks are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于机器学习支持信号完整性设计的实用方法
通过AI/ML模块增强的PCB设计系统可以在开发过程中支持微电子元件的最佳使用。为此,必须在早期设计阶段为PCB和电路设计人员提供基于ai的si兼容组件互连建议。基于人工智能的模块也可以作为工程师在布局前、并行和布局后分析阶段选择互连结构的参考,但很少或没有信号完整性(SI)经验。本文从实际的角度展示了如何为SI分析创建ML模块。提出了用于预测PCB子网络设计相关SI参数的ML模块(k-最近邻(kNN) +神经网络(NN - Keras) +支持向量回归(SVR))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining 2oo3 Voting and Hamming Error Correction to Reduce the Occurrence of False Negatives in Wired Communication Lines under Continuous-Wave Electromagnetic Disturbances Time-domain Multitone Impedance Measurement System for Space Applications Lumped Circuit Model for Concentrically Arranged Conductors in Power Electronic Systems On Excitation Periodicity in Continuously Stirred Reverberation Chambers Inverter Interference on Charging Communication System during 400 V DC Charging of Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1