On the Wave Energy Assessment in the South China Sea

A. Osinowo, Xiaopei Lin, Z. Dongliang, W. Zhifeng
{"title":"On the Wave Energy Assessment in the South China Sea","authors":"A. Osinowo, Xiaopei Lin, Z. Dongliang, W. Zhifeng","doi":"10.6000/1929-6002.2016.05.02.1","DOIUrl":null,"url":null,"abstract":"This paper presents a thirty year (1976-2005) assessment of wave energy resource within the South China Sea (SCS) by simulation. Significant wave height (SWH) between simulation and observation shows good agreement. This shows the reliability of an along-side simulated wave period in estimating wave energy in the SCS. Results show that estimates of wave power density are more reliable in the north-central SCS and most sufficient during winter. The annual mean wave power density peaked at 12.7kW/m and 12.9kW/m during years 1986 and 1999 respectively while the highest seasonal mean of 29kW/m occurred in year 1999 during winter. The wave power density is most stable in winter and is generally more stable in offshore regions of SCS. Wave power density is most stable in years 1976, 1997 and 2004 with stability values of 1.96, 1.98 and 1.9 respectively. The stability value of 0.9 in year 1980 is the greatest in the winter of all years. Relative-rich energy regions occupy the largest area during winter. The relatively richest energy is generally concentrated in the central and north-central SCS. No area is identified as a relative-rich energy region during spring. Winter 1999 has the highest relative-rich energy with value of 37kW/m.","PeriodicalId":394478,"journal":{"name":"Journal of Technology Innovations in Renewable Energy","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Technology Innovations in Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-6002.2016.05.02.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a thirty year (1976-2005) assessment of wave energy resource within the South China Sea (SCS) by simulation. Significant wave height (SWH) between simulation and observation shows good agreement. This shows the reliability of an along-side simulated wave period in estimating wave energy in the SCS. Results show that estimates of wave power density are more reliable in the north-central SCS and most sufficient during winter. The annual mean wave power density peaked at 12.7kW/m and 12.9kW/m during years 1986 and 1999 respectively while the highest seasonal mean of 29kW/m occurred in year 1999 during winter. The wave power density is most stable in winter and is generally more stable in offshore regions of SCS. Wave power density is most stable in years 1976, 1997 and 2004 with stability values of 1.96, 1.98 and 1.9 respectively. The stability value of 0.9 in year 1980 is the greatest in the winter of all years. Relative-rich energy regions occupy the largest area during winter. The relatively richest energy is generally concentrated in the central and north-central SCS. No area is identified as a relative-rich energy region during spring. Winter 1999 has the highest relative-rich energy with value of 37kW/m.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
南海波浪能评价研究
本文用模拟方法对南海三十年(1976-2005)的波浪能资源进行了评价。有效波高(SWH)的模拟值与观测值吻合较好。这表明沿侧模拟波周期在估计南海波浪能量方面的可靠性。结果表明,波浪能密度的估计在南海中北部更可靠,在冬季最充分。年平均波能密度在1986年和1999年达到峰值,分别为12.7kW/m和12.9kW/m, 1999年冬季最高,为29kW/m。波能密度在冬季最为稳定,在南海近海区域总体较为稳定。波能密度在1976年、1997年和2004年最稳定,稳定值分别为1.96、1.98和1.9。1980年冬季的稳定值最大,为0.9。在冬季,能量相对丰富的地区占据了最大的面积。相对丰富的能量一般集中在南海中部和中北部。在春季,没有一个地区被确定为能源相对丰富的地区。1999年冬季相对富能量最高,为37kW/m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Technological Surveillance in Electric River Mobility for Cargo Transport on the Atrato River, Colombia Study of Technological Surveillance in Electric River Mobility for Cargo Transport on the Atrato River, Colombia A Comparative Study on the Renewable Energy Related Curriculums in the Universities in Guangdong- Hong Kong- Macao Greater Bay Area Numerical Modeling Prediction of Thermal Storage during Discharging Phase, PV- Thermal Solar and with Nanofluids Bathocuproine Buffer Layer Effect on the Performance of Inverted Perovskite Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1