Multichannel Blind Identification from Noisy Sensor Array Observations: A Stochastic Realization Approach

I. Fijalkow, P. Loubaton
{"title":"Multichannel Blind Identification from Noisy Sensor Array Observations: A Stochastic Realization Approach","authors":"I. Fijalkow, P. Loubaton","doi":"10.1109/SSAP.1994.572513","DOIUrl":null,"url":null,"abstract":"Subspace methods for blind multichannel identification can not be extended to the case of a non white noise. For an unknown temporally white but spatially correlated perturbation, we pr+ pose a method based on a stochastic realization approach. It relies on the fact that the observed signal spectral density matrix is the s u m of a rational rank 1 spectral density and of a constant positive definite matrix (the noise Covariance matrix). The generic unicity of this decomposition is shown. An identification method based on the parametrization of the (external) stochastic realizations of the observed signal whose innovation sequence has a prescribed dimension is developped. It results in a state-space realization of the multichannel transfer function and in the noise covariance matrix.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Subspace methods for blind multichannel identification can not be extended to the case of a non white noise. For an unknown temporally white but spatially correlated perturbation, we pr+ pose a method based on a stochastic realization approach. It relies on the fact that the observed signal spectral density matrix is the s u m of a rational rank 1 spectral density and of a constant positive definite matrix (the noise Covariance matrix). The generic unicity of this decomposition is shown. An identification method based on the parametrization of the (external) stochastic realizations of the observed signal whose innovation sequence has a prescribed dimension is developped. It results in a state-space realization of the multichannel transfer function and in the noise covariance matrix.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噪声传感器阵列观测的多通道盲识别:一种随机实现方法
子空间盲多通道识别方法不能推广到无白噪声的情况下。对于未知的时间白色但空间相关的扰动,我们提出了一种基于随机实现方法的方法。它依赖于这样一个事实,即观测到的信号谱密度矩阵是一个有理秩1谱密度和一个常数正定矩阵(噪声协方差矩阵)的s μ m。证明了这种分解的一般唯一性。提出了一种基于创新序列具有规定维数的观测信号(外部)随机实现参数化的辨识方法。它得到了多通道传递函数的状态空间实现和噪声协方差矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hopfield Network Approach to Beamforrning in Spread Spectrum Communication A Comparative Study of Statistical and Neural DOA Estimation Techniques A New Cumulant Based Phase Estimation Nonminimum-phase Systems By Allpass Study of the Couple (Reflection Coefficient, K-Nn Rule) An N-D Technique for Coherent Wave Doa Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1