Reunion Block for High Magnification Histopathology Microscopic Image Analysis

Hyun-Cheol Park, Sang-Woong Lee
{"title":"Reunion Block for High Magnification Histopathology Microscopic Image Analysis","authors":"Hyun-Cheol Park, Sang-Woong Lee","doi":"10.1145/3440943.3444356","DOIUrl":null,"url":null,"abstract":"The input image scale must be considered in the microsatellite instability recognition method through deep learning image analysis. Since pathological images can observe various features through high magnification, an image analysis method capable of analyzing high-resolution images is required. Although CNN has excellent image analysis capabilities, the size of input images is limited. If we want to analyze an area bigger than the input image size of the CNN, the area should be reduced or crop. In this paper, we propose a recombination block that extracts and combines features in patch units to handle microsatellite images made up of high-resolution images.","PeriodicalId":310247,"journal":{"name":"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440943.3444356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The input image scale must be considered in the microsatellite instability recognition method through deep learning image analysis. Since pathological images can observe various features through high magnification, an image analysis method capable of analyzing high-resolution images is required. Although CNN has excellent image analysis capabilities, the size of input images is limited. If we want to analyze an area bigger than the input image size of the CNN, the area should be reduced or crop. In this paper, we propose a recombination block that extracts and combines features in patch units to handle microsatellite images made up of high-resolution images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高倍组织病理学显微图像分析的团聚块
基于深度学习图像分析的微卫星不稳定性识别方法必须考虑输入图像的尺度。由于病理图像可以通过高倍放大观察到各种特征,因此需要一种能够分析高分辨率图像的图像分析方法。虽然CNN具有出色的图像分析能力,但是输入图像的大小是有限的。如果我们想要分析比CNN输入图像尺寸更大的区域,则应该减少或裁剪该区域。在本文中,我们提出了一种提取和组合斑块单元特征的重组块来处理由高分辨率图像组成的微卫星图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Image Processing Approach for Improving the Recognition of Cluster-like Spheroidized Carbides XGBoost based Packer Identification study using Entry point Machine Learning-Based Profiling Attack Method in RSA Prime Multiplication A Classification method of Fake News based on Ensemble Learning Intelligent Controlling System in Aquaculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1